146 lines
5.2 KiB
Python
Raw Normal View History

2020-03-17 20:22:37 +08:00
import gym
import torch
import argparse
import numpy as np
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import A2CPolicy
from tianshou.env import SubprocVectorEnv
2020-03-19 17:23:46 +08:00
from tianshou.trainer import episodic_trainer
2020-03-17 20:22:37 +08:00
from tianshou.data import Collector, ReplayBuffer
class Net(nn.Module):
2020-03-19 17:23:46 +08:00
def __init__(self, layer_num, state_shape, device='cpu'):
2020-03-17 20:22:37 +08:00
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
2020-03-19 17:23:46 +08:00
self.model = nn.Sequential(*self.model)
2020-03-17 20:22:37 +08:00
2020-03-19 17:23:46 +08:00
def forward(self, s):
2020-03-17 20:22:37 +08:00
s = torch.tensor(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
2020-03-19 17:23:46 +08:00
logits = self.model(s)
return logits
class Actor(nn.Module):
def __init__(self, preprocess_net, action_shape):
super().__init__()
self.model = nn.Sequential(*[
preprocess_net,
nn.Linear(128, np.prod(action_shape)),
])
def forward(self, s, **kwargs):
logits = self.model(s)
return logits, None
class Critic(nn.Module):
def __init__(self, preprocess_net):
super().__init__()
self.model = nn.Sequential(*[
preprocess_net,
nn.Linear(128, 1),
])
def forward(self, s):
logits = self.model(s)
return logits
2020-03-17 20:22:37 +08:00
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
2020-03-18 21:45:41 +08:00
parser.add_argument('--lr', type=float, default=3e-4)
2020-03-17 20:22:37 +08:00
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=320)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=2)
2020-03-18 21:45:41 +08:00
parser.add_argument('--training-num', type=int, default=32)
2020-03-17 20:22:37 +08:00
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
# a2c special
parser.add_argument('--vf-coef', type=float, default=0.5)
parser.add_argument('--entropy-coef', type=float, default=0.001)
2020-03-18 21:45:41 +08:00
parser.add_argument('--max-grad-norm', type=float, default=None)
2020-03-17 20:22:37 +08:00
args = parser.parse_known_args()[0]
return args
def test_a2c(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)],
reset_after_done=True)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
reset_after_done=False)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
2020-03-19 17:23:46 +08:00
net = Net(args.layer_num, args.state_shape, args.device)
actor = Actor(net, args.action_shape).to(args.device)
critic = Critic(net).to(args.device)
optim = torch.optim.Adam(list(
actor.parameters()) + list(critic.parameters()), lr=args.lr)
2020-03-17 20:22:37 +08:00
dist = torch.distributions.Categorical
policy = A2CPolicy(
2020-03-19 17:23:46 +08:00
actor, critic, optim, dist, args.gamma, vf_coef=args.vf_coef,
entropy_coef=args.entropy_coef, max_grad_norm=args.max_grad_norm)
2020-03-17 20:22:37 +08:00
# collector
2020-03-19 17:23:46 +08:00
train_collector = Collector(
2020-03-17 20:22:37 +08:00
policy, train_envs, ReplayBuffer(args.buffer_size))
2020-03-18 21:45:41 +08:00
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
2020-03-17 20:22:37 +08:00
# log
writer = SummaryWriter(args.logdir)
2020-03-19 17:23:46 +08:00
def stop_fn(x):
return x >= env.spec.reward_threshold
# trainer
train_step, train_episode, test_step, test_episode, best_rew, duration = \
episodic_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=stop_fn, writer=writer)
assert stop_fn(best_rew)
train_collector.close()
2020-03-17 20:22:37 +08:00
test_collector.close()
if __name__ == '__main__':
2020-03-19 17:23:46 +08:00
print(f'Collect {train_step} frame / {train_episode} episode during '
f'training and {test_step} frame / {test_episode} episode during'
f' test in {duration:.2f}s, best_reward: {best_rew}, speed: '
f'{(train_step + test_step) / duration:.2f}it/s')
2020-03-17 20:22:37 +08:00
# Let's watch its performance!
env = gym.make(args.task)
2020-03-19 17:23:46 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=1 / 35)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
2020-03-17 20:22:37 +08:00
if __name__ == '__main__':
test_a2c()