95 lines
3.4 KiB
Python
Raw Normal View History

2020-03-18 21:45:41 +08:00
import torch
from copy import deepcopy
import torch.nn.functional as F
from tianshou.data import Batch
from tianshou.policy import BasePolicy
# from tianshou.exploration import OUNoise
class DDPGPolicy(BasePolicy):
"""docstring for DDPGPolicy"""
def __init__(self, actor, actor_optim,
critic, critic_optim, action_range,
tau=0.005, gamma=0.99, exploration_noise=0.1):
super().__init__()
self.actor = actor
self.actor_old = deepcopy(actor)
self.actor_old.load_state_dict(self.actor.state_dict())
self.actor_old.eval()
self.actor_optim = actor_optim
self.critic = critic
self.critic_old = deepcopy(critic)
self.critic_old.load_state_dict(self.critic.state_dict())
self.critic_old.eval()
self.critic_optim = critic_optim
assert 0 < tau <= 1, 'tau should in (0, 1]'
self._tau = tau
assert 0 < gamma <= 1, 'gamma should in (0, 1]'
self._gamma = gamma
2020-03-19 17:23:46 +08:00
assert 0 <= exploration_noise, 'noise should not be negative'
2020-03-18 21:45:41 +08:00
self._eps = exploration_noise
self._range = action_range
# self.noise = OUNoise()
def set_eps(self, eps):
self._eps = eps
def train(self):
self.training = True
self.actor.train()
self.critic.train()
def eval(self):
self.training = False
self.actor.eval()
self.critic.eval()
def sync_weight(self):
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
for o, n in zip(
self.critic_old.parameters(), self.critic.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
def process_fn(self, batch, buffer, indice):
return batch
def __call__(self, batch, state=None,
model='actor', input='obs', eps=None):
model = getattr(self, model)
obs = getattr(batch, input)
logits, h = model(obs, state=state, info=batch.info)
# noise = np.random.normal(0, self._eps, size=logits.shape)
logits += torch.randn(
size=logits.shape, device=logits.device) * self._eps
# noise = self.noise(logits.shape, self._eps)
# logits += torch.tensor(noise, device=logits.device)
logits = logits.clamp(self._range[0], self._range[1])
return Batch(act=logits, state=h)
def learn(self, batch, batch_size=None):
target_q = self.critic_old(
batch.obs_next, self.actor_old(batch.obs_next, state=None)[0])
dev = target_q.device
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)
done = torch.tensor(batch.done, dtype=torch.float, device=dev)
target_q = rew[:, None] + ((
1. - done[:, None]) * self._gamma * target_q).detach()
current_q = self.critic(batch.obs, batch.act)
critic_loss = F.mse_loss(current_q, target_q)
self.critic_optim.zero_grad()
critic_loss.backward()
self.critic_optim.step()
actor_loss = -self.critic(
batch.obs, self.actor(batch.obs, state=None)[0]).mean()
self.actor_optim.zero_grad()
actor_loss.backward()
self.actor_optim.step()
2020-03-19 17:23:46 +08:00
self.sync_weight()
return {
'loss/actor': actor_loss.detach().cpu().numpy(),
'loss/critic': critic_loss.detach().cpu().numpy(),
}