Tianshou/tianshou/data/data_collector.py

200 lines
9.7 KiB
Python
Raw Normal View History

import numpy as np
import logging
import itertools
from .data_buffer.replay_buffer_base import ReplayBufferBase
from .data_buffer.batch_set import BatchSet
from .utils import internal_key_match
2018-04-15 17:41:43 +08:00
from ..core.policy.deterministic import Deterministic
2018-05-20 22:36:04 +08:00
__all__ = [
'DataCollector',
]
2018-04-15 11:46:46 +08:00
class DataCollector(object):
"""
2018-04-15 11:46:46 +08:00
A utility class to manage the data flow during the interaction between the policy and the environment.
2018-04-15 17:41:43 +08:00
It stores data into ``data_buffer``, processes the reward signals and returns the feed_dict for
tf graph running.
:param env: An environment.
:param policy: A :class:`tianshou.core.policy`.
:param data_buffer: A :class:`tianshou.data.data_buffer`.
:param process_functions: A list of callables in :mod:`tianshou.data.advantage_estimation`
to process rewards.
:param managed_networks: A list of networks of :class:`tianshou.core.policy` and/or
:class:`tianshou.core.value_function`. The networks you want this class to manage. This class
will automatically generate the feed_dict for all the placeholders in the ``managed_placeholders``
of all networks in this list.
"""
def __init__(self, env, policy, data_buffer, process_functions, managed_networks):
self.env = env
self.policy = policy
self.data_buffer = data_buffer
self.process_functions = process_functions
self.managed_networks = managed_networks
self.data = {}
self.data_batch = {}
self.required_placeholders = {}
for net in self.managed_networks:
self.required_placeholders.update(net.managed_placeholders)
self.require_advantage = 'advantage' in self.required_placeholders.keys()
if isinstance(self.data_buffer, ReplayBufferBase): # process when sampling minibatch
self.process_mode = 'sample'
else:
self.process_mode = 'full'
self.current_observation = self.env.reset()
2018-03-28 18:47:41 +08:00
self.step_count_this_episode = 0
2018-03-28 18:47:41 +08:00
def collect(self, num_timesteps=0, num_episodes=0, my_feed_dict={}, auto_clear=True, episode_cutoff=None):
2018-04-15 17:41:43 +08:00
"""
Collect data in the environment using ``self.policy``.
:param num_timesteps: An int specifying the number of timesteps to act. It defaults to 0 and either
``num_timesteps`` or ``num_episodes`` could be set but not both.
:param num_episodes: An int specifying the number of episodes to act. It defaults to 0 and either
``num_timesteps`` or ``num_episodes`` could be set but not both.
:param my_feed_dict: Optional. A dict defaulting to empty.
Specifies placeholders such as dropout and batch_norm except observation and action.
:param auto_clear: Optional. A bool defaulting to ``True``. If ``True`` then this method clears the
``self.data_buffer`` if ``self.data_buffer`` is an instance of
:class:`tianshou.data.data_buffer.BatchSet.` and does nothing if it's not that instance.
If set to ``False`` then the aforementioned auto clearing behavior is disabled.
:param episode_cutoff: Optional. An int. The maximum number of timesteps in one episode. This is
useful when the environment has no terminal states or a single episode could be prohibitively long.
If set than all episodes are forced to stop beyond this number to timesteps.
"""
assert sum([num_timesteps > 0, num_episodes > 0]) == 1,\
"One and only one collection number specification permitted!"
if isinstance(self.data_buffer, BatchSet) and auto_clear:
self.data_buffer.clear()
if num_timesteps > 0:
num_timesteps_ = int(num_timesteps)
for _ in range(num_timesteps_):
action = self.policy.act(self.current_observation, my_feed_dict=my_feed_dict)
next_observation, reward, done, _ = self.env.step(action)
2018-03-28 18:47:41 +08:00
self.step_count_this_episode += 1
if episode_cutoff and self.step_count_this_episode >= episode_cutoff:
done = True
self.data_buffer.add((self.current_observation, action, reward, done))
if done:
self.current_observation = self.env.reset()
self.policy.reset()
2018-03-28 18:47:41 +08:00
self.step_count_this_episode = 0
else:
self.current_observation = next_observation
if num_episodes > 0:
num_episodes_ = int(num_episodes)
for _ in range(num_episodes_):
observation = self.env.reset()
2018-03-31 19:26:48 +08:00
self.policy.reset()
done = False
2018-03-28 18:47:41 +08:00
step_count = 0
while not done:
action = self.policy.act(observation, my_feed_dict=my_feed_dict)
next_observation, reward, done, _ = self.env.step(action)
2018-03-28 18:47:41 +08:00
step_count += 1
if episode_cutoff and step_count >= episode_cutoff:
done = True
self.data_buffer.add((observation, action, reward, done))
observation = next_observation
2018-03-28 18:47:41 +08:00
self.current_observation = self.env.reset()
if self.process_mode == 'full':
for processor in self.process_functions:
self.data.update(processor(self.data_buffer))
2018-04-15 17:41:43 +08:00
return
def next_batch(self, batch_size, standardize_advantage=True, my_feed_dict={}):
2018-04-15 17:41:43 +08:00
"""
Constructs and returns the feed_dict of data to be used with ``sess.run``.
:param batch_size: An int. The size of one minibatch.
:param standardize_advantage: Optional. A bool but defaulting to ``True``.
If ``True``, then this method standardize advantages if advantage is required by the networks.
If ``False`` then this method will never standardize advantage.
:return: A dict in the format of conventional feed_dict in tf, with keys the placeholders and
values the numpy arrays.
"""
sampled_index = self.data_buffer.sample(batch_size)
if self.process_mode == 'sample':
for processor in self.process_functions:
self.data_batch.update(processor(self.data_buffer, indexes=sampled_index, my_feed_dict=my_feed_dict))
# flatten rank-2 list to numpy array, construct feed_dict
feed_dict = {}
frame_key_map = {'observation': 0, 'action': 1, 'reward': 2, 'done_flag': 3}
for key, placeholder in self.required_placeholders.items():
# check raw_data first
found, matched_key = internal_key_match(key, frame_key_map.keys())
if found:
frame_index = frame_key_map[matched_key]
flattened = []
for index_episode, data_episode in zip(sampled_index, self.data_buffer.data):
for i in index_episode:
flattened.append(data_episode[i][frame_index])
feed_dict[placeholder] = np.array(flattened)
else:
# then check processed minibatch data
found, matched_key = internal_key_match(key, self.data_batch.keys())
if found:
flattened = list(itertools.chain.from_iterable(self.data_batch[matched_key]))
feed_dict[placeholder] = np.array(flattened)
else:
# finally check processed full data
found, matched_key = internal_key_match(key, self.data.keys())
if found:
flattened = [0.] * batch_size # float
i_in_batch = 0
for index_episode, data_episode in zip(sampled_index, self.data[matched_key]):
for i in index_episode:
flattened[i_in_batch] = data_episode[i]
i_in_batch += 1
feed_dict[placeholder] = np.array(flattened)
else:
raise TypeError('Placeholder {} has no value to feed!'.format(str(placeholder.name)))
2018-04-15 17:41:43 +08:00
if standardize_advantage:
if self.require_advantage:
advantage_value = feed_dict[self.required_placeholders['advantage']]
advantage_mean = np.mean(advantage_value)
advantage_std = np.std(advantage_value)
if advantage_std < 1e-3:
logging.warning('advantage_std too small (< 1e-3) for advantage standardization. may cause numerical issues')
feed_dict[self.required_placeholders['advantage']] = (advantage_value - advantage_mean) / advantage_std
return feed_dict
2018-04-15 17:41:43 +08:00
def denoise_action(self, feed_dict, my_feed_dict={}):
"""
Recompute the actions of deterministic policies without exploration noise, hence denoising.
It modifies ``feed_dict`` **in place** and has no return value.
This is useful in, e.g., DDPG since the stored action in ``self.data_buffer`` is the sampled
action with additional exploration noise.
:param feed_dict: A dict. It has to be the dict returned by :func:`next_batch` by this class.
:param my_feed_dict: Optional. A dict defaulting to empty.
Specifies placeholders such as dropout and batch_norm except observation and action.
"""
assert isinstance(self.policy, Deterministic), 'denoise_action() could only be called' \
'with deterministic policies'
observation = feed_dict[self.required_placeholders['observation']]
2018-04-15 17:41:43 +08:00
action_mean = self.policy.eval_action(observation, my_feed_dict)
feed_dict[self.required_placeholders['action']] = action_mean
return