2020-03-15 17:41:00 +08:00
|
|
|
import gym
|
2020-03-16 11:11:29 +08:00
|
|
|
import time
|
2020-03-15 17:41:00 +08:00
|
|
|
import tqdm
|
|
|
|
import torch
|
|
|
|
import argparse
|
|
|
|
import numpy as np
|
|
|
|
from torch import nn
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
|
|
|
from tianshou.policy import DQNPolicy
|
|
|
|
from tianshou.env import SubprocVectorEnv
|
|
|
|
from tianshou.utils import tqdm_config, MovAvg
|
|
|
|
from tianshou.data import Collector, ReplayBuffer
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Module):
|
|
|
|
def __init__(self, layer_num, state_shape, action_shape, device):
|
|
|
|
super().__init__()
|
|
|
|
self.device = device
|
|
|
|
self.model = [
|
|
|
|
nn.Linear(np.prod(state_shape), 128),
|
|
|
|
nn.ReLU(inplace=True)]
|
|
|
|
for i in range(layer_num):
|
|
|
|
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
|
|
|
|
self.model += [nn.Linear(128, np.prod(action_shape))]
|
|
|
|
self.model = nn.Sequential(*self.model)
|
|
|
|
|
|
|
|
def forward(self, s, **kwargs):
|
|
|
|
if not isinstance(s, torch.Tensor):
|
|
|
|
s = torch.Tensor(s)
|
|
|
|
s = s.to(self.device)
|
|
|
|
batch = s.shape[0]
|
|
|
|
q = self.model(s.view(batch, -1))
|
|
|
|
return q, None
|
|
|
|
|
|
|
|
|
|
|
|
def get_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--task', type=str, default='CartPole-v0')
|
2020-03-16 11:11:29 +08:00
|
|
|
parser.add_argument('--seed', type=int, default=1626)
|
2020-03-15 17:41:00 +08:00
|
|
|
parser.add_argument('--eps-test', type=float, default=0.05)
|
|
|
|
parser.add_argument('--eps-train', type=float, default=0.1)
|
|
|
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
|
|
|
parser.add_argument('--lr', type=float, default=1e-3)
|
|
|
|
parser.add_argument('--gamma', type=float, default=0.9)
|
|
|
|
parser.add_argument('--n-step', type=int, default=1)
|
|
|
|
parser.add_argument('--epoch', type=int, default=100)
|
|
|
|
parser.add_argument('--step-per-epoch', type=int, default=320)
|
|
|
|
parser.add_argument('--collect-per-step', type=int, default=10)
|
|
|
|
parser.add_argument('--batch-size', type=int, default=64)
|
|
|
|
parser.add_argument('--layer-num', type=int, default=3)
|
|
|
|
parser.add_argument('--training-num', type=int, default=8)
|
|
|
|
parser.add_argument('--test-num', type=int, default=20)
|
|
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
|
|
parser.add_argument(
|
|
|
|
'--device', type=str,
|
|
|
|
default='cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
args = parser.parse_known_args()[0]
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
def test_dqn(args=get_args()):
|
|
|
|
env = gym.make(args.task)
|
|
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
|
|
train_envs = SubprocVectorEnv(
|
|
|
|
[lambda: gym.make(args.task) for _ in range(args.training_num)],
|
|
|
|
reset_after_done=True)
|
2020-03-16 11:11:29 +08:00
|
|
|
# test_envs = gym.make(args.task)
|
2020-03-15 17:41:00 +08:00
|
|
|
test_envs = SubprocVectorEnv(
|
|
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)],
|
|
|
|
reset_after_done=False)
|
|
|
|
# seed
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
train_envs.seed(args.seed)
|
|
|
|
test_envs.seed(args.seed)
|
|
|
|
# model
|
|
|
|
net = Net(args.layer_num, args.state_shape, args.action_shape, args.device)
|
|
|
|
net = net.to(args.device)
|
|
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
|
|
loss = nn.MSELoss()
|
|
|
|
policy = DQNPolicy(net, optim, loss, args.gamma, args.n_step)
|
|
|
|
# collector
|
|
|
|
training_collector = Collector(
|
|
|
|
policy, train_envs, ReplayBuffer(args.buffer_size))
|
|
|
|
test_collector = Collector(
|
|
|
|
policy, test_envs, ReplayBuffer(args.buffer_size), args.test_num)
|
|
|
|
training_collector.collect(n_step=args.batch_size)
|
|
|
|
# log
|
|
|
|
stat_loss = MovAvg()
|
|
|
|
global_step = 0
|
|
|
|
writer = SummaryWriter(args.logdir)
|
|
|
|
best_epoch = -1
|
|
|
|
best_reward = -1e10
|
|
|
|
for epoch in range(args.epoch):
|
|
|
|
desc = f"Epoch #{epoch + 1}"
|
|
|
|
# train
|
|
|
|
policy.train()
|
|
|
|
policy.sync_weight()
|
|
|
|
policy.set_eps(args.eps_train)
|
|
|
|
with tqdm.trange(
|
|
|
|
0, args.step_per_epoch, desc=desc, **tqdm_config) as t:
|
|
|
|
for _ in t:
|
|
|
|
training_collector.collect(n_step=args.collect_per_step)
|
|
|
|
global_step += 1
|
|
|
|
result = training_collector.stat()
|
|
|
|
loss = policy.learn(training_collector.sample(args.batch_size))
|
|
|
|
stat_loss.add(loss)
|
|
|
|
writer.add_scalar(
|
|
|
|
'reward', result['reward'], global_step=global_step)
|
|
|
|
writer.add_scalar(
|
|
|
|
'length', result['length'], global_step=global_step)
|
|
|
|
writer.add_scalar(
|
|
|
|
'loss', stat_loss.get(), global_step=global_step)
|
|
|
|
t.set_postfix(loss=f'{stat_loss.get():.6f}',
|
|
|
|
reward=f'{result["reward"]:.6f}',
|
|
|
|
length=f'{result["length"]:.6f}')
|
|
|
|
# eval
|
|
|
|
test_collector.reset_env()
|
|
|
|
test_collector.reset_buffer()
|
|
|
|
policy.eval()
|
|
|
|
policy.set_eps(args.eps_test)
|
|
|
|
test_collector.collect(n_episode=args.test_num)
|
|
|
|
result = test_collector.stat()
|
|
|
|
if best_reward < result['reward']:
|
|
|
|
best_reward = result['reward']
|
|
|
|
best_epoch = epoch
|
2020-03-16 11:11:29 +08:00
|
|
|
print(f'Epoch #{epoch + 1} test_reward: {result["reward"]:.6f}, '
|
2020-03-15 17:41:00 +08:00
|
|
|
f'best_reward: {best_reward:.6f} in #{best_epoch}')
|
|
|
|
if args.task == 'CartPole-v0' and best_reward >= 200:
|
|
|
|
break
|
|
|
|
assert best_reward >= 200
|
2020-03-16 11:11:29 +08:00
|
|
|
if __name__ == '__main__':
|
|
|
|
# let's watch its performance!
|
|
|
|
env = gym.make(args.task)
|
|
|
|
obs = env.reset()
|
|
|
|
done = False
|
|
|
|
total = 0
|
|
|
|
while not done:
|
|
|
|
q, _ = net([obs])
|
|
|
|
action = q.max(dim=1)[1]
|
|
|
|
obs, rew, done, info = env.step(action[0].detach().cpu().numpy())
|
|
|
|
total += rew
|
|
|
|
env.render()
|
|
|
|
time.sleep(1 / 100)
|
|
|
|
env.close()
|
|
|
|
print(f'Final test: {total}')
|
2020-03-15 17:41:00 +08:00
|
|
|
return best_reward
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_dqn(get_args())
|