Tianshou/test/test_dqn.py

154 lines
5.7 KiB
Python
Raw Normal View History

2020-03-15 17:41:00 +08:00
import gym
2020-03-16 11:11:29 +08:00
import time
2020-03-15 17:41:00 +08:00
import tqdm
import torch
import argparse
import numpy as np
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.env import SubprocVectorEnv
from tianshou.utils import tqdm_config, MovAvg
from tianshou.data import Collector, ReplayBuffer
class Net(nn.Module):
def __init__(self, layer_num, state_shape, action_shape, device):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, np.prod(action_shape))]
self.model = nn.Sequential(*self.model)
def forward(self, s, **kwargs):
if not isinstance(s, torch.Tensor):
s = torch.Tensor(s)
s = s.to(self.device)
batch = s.shape[0]
q = self.model(s.view(batch, -1))
return q, None
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
2020-03-16 11:11:29 +08:00
parser.add_argument('--seed', type=int, default=1626)
2020-03-15 17:41:00 +08:00
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--n-step', type=int, default=1)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=320)
parser.add_argument('--collect-per-step', type=int, default=10)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--layer-num', type=int, default=3)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=20)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_dqn(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)],
reset_after_done=True)
2020-03-16 11:11:29 +08:00
# test_envs = gym.make(args.task)
2020-03-15 17:41:00 +08:00
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
reset_after_done=False)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.layer_num, args.state_shape, args.action_shape, args.device)
net = net.to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
loss = nn.MSELoss()
policy = DQNPolicy(net, optim, loss, args.gamma, args.n_step)
# collector
training_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(
policy, test_envs, ReplayBuffer(args.buffer_size), args.test_num)
training_collector.collect(n_step=args.batch_size)
# log
stat_loss = MovAvg()
global_step = 0
writer = SummaryWriter(args.logdir)
best_epoch = -1
best_reward = -1e10
for epoch in range(args.epoch):
desc = f"Epoch #{epoch + 1}"
# train
policy.train()
policy.sync_weight()
policy.set_eps(args.eps_train)
with tqdm.trange(
0, args.step_per_epoch, desc=desc, **tqdm_config) as t:
for _ in t:
training_collector.collect(n_step=args.collect_per_step)
global_step += 1
result = training_collector.stat()
loss = policy.learn(training_collector.sample(args.batch_size))
stat_loss.add(loss)
writer.add_scalar(
'reward', result['reward'], global_step=global_step)
writer.add_scalar(
'length', result['length'], global_step=global_step)
writer.add_scalar(
'loss', stat_loss.get(), global_step=global_step)
t.set_postfix(loss=f'{stat_loss.get():.6f}',
reward=f'{result["reward"]:.6f}',
length=f'{result["length"]:.6f}')
# eval
test_collector.reset_env()
test_collector.reset_buffer()
policy.eval()
policy.set_eps(args.eps_test)
test_collector.collect(n_episode=args.test_num)
result = test_collector.stat()
if best_reward < result['reward']:
best_reward = result['reward']
best_epoch = epoch
2020-03-16 11:11:29 +08:00
print(f'Epoch #{epoch + 1} test_reward: {result["reward"]:.6f}, '
2020-03-15 17:41:00 +08:00
f'best_reward: {best_reward:.6f} in #{best_epoch}')
if args.task == 'CartPole-v0' and best_reward >= 200:
break
assert best_reward >= 200
2020-03-16 11:11:29 +08:00
if __name__ == '__main__':
# let's watch its performance!
env = gym.make(args.task)
obs = env.reset()
done = False
total = 0
while not done:
q, _ = net([obs])
action = q.max(dim=1)[1]
obs, rew, done, info = env.step(action[0].detach().cpu().numpy())
total += rew
env.render()
time.sleep(1 / 100)
env.close()
print(f'Final test: {total}')
2020-03-15 17:41:00 +08:00
return best_reward
if __name__ == '__main__':
test_dqn(get_args())