Tianshou/test/modelbase/test_psrl.py

98 lines
3.8 KiB
Python
Raw Normal View History

import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import PSRLPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='NChain-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=50000)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=5)
parser.add_argument('--collect-per-step', type=int, default=1)
parser.add_argument('--training-num', type=int, default=1)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.0)
parser.add_argument('--rew-mean-prior', type=float, default=0.0)
parser.add_argument('--rew-std-prior', type=float, default=1.0)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--eps', type=float, default=0.01)
parser.add_argument('--add-done-loop', action='store_true')
return parser.parse_known_args()[0]
def test_psrl(args=get_args()):
env = gym.make(args.task)
if args.task == "NChain-v0":
env.spec.reward_threshold = 3647 # described in PSRL paper
print("reward threshold:", env.spec.reward_threshold)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
n_action = args.action_shape
n_state = args.state_shape
trans_count_prior = np.ones((n_state, n_action, n_state))
rew_mean_prior = np.full((n_state, n_action), args.rew_mean_prior)
rew_std_prior = np.full((n_state, n_action), args.rew_std_prior)
policy = PSRLPolicy(
trans_count_prior, rew_mean_prior, rew_std_prior, args.gamma, args.eps,
args.add_done_loop)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# log
writer = SummaryWriter(args.logdir + '/' + args.task)
def stop_fn(mean_rewards):
if env.spec.reward_threshold:
return mean_rewards >= env.spec.reward_threshold
else:
return False
train_collector.collect(n_step=args.buffer_size, random=True)
# trainer
result = onpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, 1,
args.test_num, 0, stop_fn=stop_fn, writer=writer,
test_in_train=False)
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=[1] * args.test_num,
render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
elif env.spec.reward_threshold:
assert result["best_reward"] >= env.spec.reward_threshold
if __name__ == '__main__':
test_psrl()