2023-10-10 12:55:25 +02:00
|
|
|
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
import os
|
|
|
|
from collections.abc import Sequence
|
|
|
|
from typing import Literal
|
|
|
|
|
2023-10-18 13:57:36 +02:00
|
|
|
import torch
|
2023-10-10 12:55:25 +02:00
|
|
|
|
|
|
|
from examples.mujoco.mujoco_env import MujocoEnvFactory
|
|
|
|
from tianshou.highlevel.config import SamplingConfig
|
|
|
|
from tianshou.highlevel.experiment import (
|
|
|
|
ExperimentConfig,
|
|
|
|
PGExperimentBuilder,
|
|
|
|
)
|
|
|
|
from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear
|
|
|
|
from tianshou.highlevel.params.policy_params import PGParams
|
2023-11-07 10:54:22 +01:00
|
|
|
from tianshou.utils import logging
|
|
|
|
from tianshou.utils.logging import datetime_tag
|
2023-10-10 12:55:25 +02:00
|
|
|
|
|
|
|
|
|
|
|
def main(
|
|
|
|
experiment_config: ExperimentConfig,
|
|
|
|
task: str = "Ant-v3",
|
|
|
|
buffer_size: int = 4096,
|
|
|
|
hidden_sizes: Sequence[int] = (64, 64),
|
|
|
|
lr: float = 1e-3,
|
|
|
|
gamma: float = 0.99,
|
|
|
|
epoch: int = 100,
|
|
|
|
step_per_epoch: int = 30000,
|
|
|
|
step_per_collect: int = 2048,
|
|
|
|
repeat_per_collect: int = 1,
|
|
|
|
batch_size: int = 99999,
|
|
|
|
training_num: int = 64,
|
|
|
|
test_num: int = 10,
|
|
|
|
rew_norm: bool = True,
|
|
|
|
action_bound_method: Literal["clip", "tanh"] = "tanh",
|
|
|
|
lr_decay: bool = True,
|
|
|
|
):
|
|
|
|
log_name = os.path.join(task, "reinforce", str(experiment_config.seed), datetime_tag())
|
|
|
|
|
|
|
|
sampling_config = SamplingConfig(
|
|
|
|
num_epochs=epoch,
|
|
|
|
step_per_epoch=step_per_epoch,
|
|
|
|
batch_size=batch_size,
|
|
|
|
num_train_envs=training_num,
|
|
|
|
num_test_envs=test_num,
|
|
|
|
buffer_size=buffer_size,
|
|
|
|
step_per_collect=step_per_collect,
|
|
|
|
repeat_per_collect=repeat_per_collect,
|
|
|
|
)
|
|
|
|
|
2023-10-18 23:55:23 +02:00
|
|
|
env_factory = MujocoEnvFactory(task, experiment_config.seed, obs_norm=True)
|
2023-10-10 12:55:25 +02:00
|
|
|
|
|
|
|
experiment = (
|
|
|
|
PGExperimentBuilder(env_factory, experiment_config, sampling_config)
|
|
|
|
.with_pg_params(
|
|
|
|
PGParams(
|
|
|
|
discount_factor=gamma,
|
|
|
|
action_bound_method=action_bound_method,
|
|
|
|
reward_normalization=rew_norm,
|
|
|
|
lr=lr,
|
|
|
|
lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config)
|
|
|
|
if lr_decay
|
|
|
|
else None,
|
|
|
|
),
|
|
|
|
)
|
2023-10-18 13:57:36 +02:00
|
|
|
.with_actor_factory_default(hidden_sizes, torch.nn.Tanh, continuous_unbounded=True)
|
2023-10-10 12:55:25 +02:00
|
|
|
.build()
|
|
|
|
)
|
|
|
|
experiment.run(log_name)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
2023-10-19 11:40:49 +02:00
|
|
|
logging.run_cli(main)
|