2022-02-15 17:56:45 +03:00
|
|
|
import argparse
|
|
|
|
import os
|
|
|
|
from typing import List, Optional, Tuple
|
|
|
|
|
|
|
|
import gym
|
|
|
|
import numpy as np
|
2022-02-25 07:40:33 +08:00
|
|
|
import pettingzoo.butterfly.pistonball_v6 as pistonball_v6
|
2022-02-15 17:56:45 +03:00
|
|
|
import torch
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
|
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
|
|
from tianshou.env import DummyVectorEnv
|
|
|
|
from tianshou.env.pettingzoo_env import PettingZooEnv
|
|
|
|
from tianshou.policy import BasePolicy, DQNPolicy, MultiAgentPolicyManager
|
|
|
|
from tianshou.trainer import offpolicy_trainer
|
|
|
|
from tianshou.utils import TensorboardLogger
|
|
|
|
from tianshou.utils.net.common import Net
|
|
|
|
|
|
|
|
|
|
|
|
def get_parser() -> argparse.ArgumentParser:
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--seed', type=int, default=1626)
|
|
|
|
parser.add_argument('--eps-test', type=float, default=0.05)
|
|
|
|
parser.add_argument('--eps-train', type=float, default=0.1)
|
|
|
|
parser.add_argument('--buffer-size', type=int, default=2000)
|
|
|
|
parser.add_argument('--lr', type=float, default=1e-3)
|
|
|
|
parser.add_argument(
|
|
|
|
'--gamma', type=float, default=0.9, help='a smaller gamma favors earlier win'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--n-pistons',
|
|
|
|
type=int,
|
|
|
|
default=3,
|
|
|
|
help='Number of pistons(agents) in the env'
|
|
|
|
)
|
|
|
|
parser.add_argument('--n-step', type=int, default=100)
|
|
|
|
parser.add_argument('--target-update-freq', type=int, default=320)
|
|
|
|
parser.add_argument('--epoch', type=int, default=3)
|
|
|
|
parser.add_argument('--step-per-epoch', type=int, default=500)
|
|
|
|
parser.add_argument('--step-per-collect', type=int, default=10)
|
|
|
|
parser.add_argument('--update-per-step', type=float, default=0.1)
|
|
|
|
parser.add_argument('--batch-size', type=int, default=100)
|
|
|
|
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
|
|
|
|
parser.add_argument('--training-num', type=int, default=10)
|
2022-02-25 07:40:33 +08:00
|
|
|
parser.add_argument('--test-num', type=int, default=10)
|
2022-02-15 17:56:45 +03:00
|
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
|
|
parser.add_argument('--render', type=float, default=0.0)
|
|
|
|
|
|
|
|
parser.add_argument(
|
|
|
|
'--watch',
|
|
|
|
default=False,
|
|
|
|
action='store_true',
|
|
|
|
help='no training, '
|
|
|
|
'watch the play of pre-trained models'
|
|
|
|
)
|
|
|
|
parser.add_argument(
|
|
|
|
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
|
|
|
|
|
|
def get_args() -> argparse.Namespace:
|
|
|
|
parser = get_parser()
|
|
|
|
return parser.parse_known_args()[0]
|
|
|
|
|
|
|
|
|
|
|
|
def get_env(args: argparse.Namespace = get_args()):
|
2022-02-25 07:40:33 +08:00
|
|
|
return PettingZooEnv(pistonball_v6.env(continuous=False, n_pistons=args.n_pistons))
|
2022-02-15 17:56:45 +03:00
|
|
|
|
|
|
|
|
|
|
|
def get_agents(
|
|
|
|
args: argparse.Namespace = get_args(),
|
|
|
|
agents: Optional[List[BasePolicy]] = None,
|
|
|
|
optims: Optional[List[torch.optim.Optimizer]] = None,
|
|
|
|
) -> Tuple[BasePolicy, List[torch.optim.Optimizer], List]:
|
|
|
|
env = get_env()
|
|
|
|
observation_space = env.observation_space['observation'] if isinstance(
|
|
|
|
env.observation_space, gym.spaces.Dict
|
|
|
|
) else env.observation_space
|
|
|
|
args.state_shape = observation_space.shape or observation_space.n
|
|
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
|
|
if agents is None:
|
|
|
|
agents = []
|
|
|
|
optims = []
|
|
|
|
for _ in range(args.n_pistons):
|
|
|
|
# model
|
|
|
|
net = Net(
|
|
|
|
args.state_shape,
|
|
|
|
args.action_shape,
|
|
|
|
hidden_sizes=args.hidden_sizes,
|
|
|
|
device=args.device
|
|
|
|
).to(args.device)
|
|
|
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
|
|
|
agent = DQNPolicy(
|
|
|
|
net,
|
|
|
|
optim,
|
|
|
|
args.gamma,
|
|
|
|
args.n_step,
|
|
|
|
target_update_freq=args.target_update_freq
|
|
|
|
)
|
|
|
|
agents.append(agent)
|
|
|
|
optims.append(optim)
|
|
|
|
|
|
|
|
policy = MultiAgentPolicyManager(agents, env)
|
|
|
|
return policy, optims, env.agents
|
|
|
|
|
|
|
|
|
|
|
|
def train_agent(
|
|
|
|
args: argparse.Namespace = get_args(),
|
|
|
|
agents: Optional[List[BasePolicy]] = None,
|
|
|
|
optims: Optional[List[torch.optim.Optimizer]] = None,
|
|
|
|
) -> Tuple[dict, BasePolicy]:
|
|
|
|
train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)])
|
|
|
|
test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)])
|
|
|
|
# seed
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
train_envs.seed(args.seed)
|
|
|
|
test_envs.seed(args.seed)
|
|
|
|
|
|
|
|
policy, optim, agents = get_agents(args, agents=agents, optims=optims)
|
|
|
|
|
|
|
|
# collector
|
|
|
|
train_collector = Collector(
|
|
|
|
policy,
|
|
|
|
train_envs,
|
|
|
|
VectorReplayBuffer(args.buffer_size, len(train_envs)),
|
|
|
|
exploration_noise=True
|
|
|
|
)
|
|
|
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
|
|
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
|
|
|
# log
|
|
|
|
log_path = os.path.join(args.logdir, 'pistonball', 'dqn')
|
|
|
|
writer = SummaryWriter(log_path)
|
|
|
|
writer.add_text("args", str(args))
|
|
|
|
logger = TensorboardLogger(writer)
|
|
|
|
|
2022-03-21 16:29:27 -04:00
|
|
|
def save_best_fn(policy):
|
2022-02-15 17:56:45 +03:00
|
|
|
pass
|
|
|
|
|
|
|
|
def stop_fn(mean_rewards):
|
|
|
|
return False
|
|
|
|
|
|
|
|
def train_fn(epoch, env_step):
|
|
|
|
[agent.set_eps(args.eps_train) for agent in policy.policies.values()]
|
|
|
|
|
|
|
|
def test_fn(epoch, env_step):
|
|
|
|
[agent.set_eps(args.eps_test) for agent in policy.policies.values()]
|
|
|
|
|
|
|
|
def reward_metric(rews):
|
|
|
|
return rews[:, 0]
|
|
|
|
|
|
|
|
# trainer
|
|
|
|
result = offpolicy_trainer(
|
|
|
|
policy,
|
|
|
|
train_collector,
|
|
|
|
test_collector,
|
|
|
|
args.epoch,
|
|
|
|
args.step_per_epoch,
|
|
|
|
args.step_per_collect,
|
|
|
|
args.test_num,
|
|
|
|
args.batch_size,
|
|
|
|
train_fn=train_fn,
|
|
|
|
test_fn=test_fn,
|
|
|
|
stop_fn=stop_fn,
|
2022-03-21 16:29:27 -04:00
|
|
|
save_best_fn=save_best_fn,
|
2022-02-15 17:56:45 +03:00
|
|
|
update_per_step=args.update_per_step,
|
|
|
|
logger=logger,
|
|
|
|
test_in_train=False,
|
|
|
|
reward_metric=reward_metric
|
|
|
|
)
|
|
|
|
|
|
|
|
return result, policy
|
|
|
|
|
|
|
|
|
|
|
|
def watch(
|
|
|
|
args: argparse.Namespace = get_args(), policy: Optional[BasePolicy] = None
|
|
|
|
) -> None:
|
2022-04-16 11:17:53 -04:00
|
|
|
env = DummyVectorEnv([get_env])
|
2022-02-15 17:56:45 +03:00
|
|
|
policy.eval()
|
|
|
|
[agent.set_eps(args.eps_test) for agent in policy.policies.values()]
|
|
|
|
collector = Collector(policy, env, exploration_noise=True)
|
|
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
|
|
rews, lens = result["rews"], result["lens"]
|
|
|
|
print(f"Final reward: {rews[:, 0].mean()}, length: {lens.mean()}")
|