Tianshou/test/pettingzoo/pistonball_continuous.py

277 lines
9.9 KiB
Python
Raw Normal View History

import argparse
import os
from typing import Any, Dict, List, Optional, Tuple, Union
import gym
import numpy as np
import pettingzoo.butterfly.pistonball_v6 as pistonball_v6
import torch
import torch.nn as nn
from torch.distributions import Independent, Normal
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.env.pettingzoo_env import PettingZooEnv
from tianshou.policy import BasePolicy, MultiAgentPolicyManager, PPOPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.continuous import ActorProb, Critic
class DQN(nn.Module):
"""Reference: Human-level control through deep reinforcement learning.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
"""
def __init__(
self,
c: int,
h: int,
w: int,
device: Union[str, int, torch.device] = "cpu",
) -> None:
super().__init__()
self.device = device
self.c = c
self.h = h
self.w = w
self.net = nn.Sequential(
nn.Conv2d(c, 32, kernel_size=8, stride=4), nn.ReLU(inplace=True),
nn.Conv2d(32, 64, kernel_size=4, stride=2), nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1), nn.ReLU(inplace=True),
nn.Flatten()
)
with torch.no_grad():
self.output_dim = np.prod(self.net(torch.zeros(1, c, h, w)).shape[1:])
def forward(
self,
x: Union[np.ndarray, torch.Tensor],
state: Optional[Any] = None,
info: Dict[str, Any] = {},
) -> Tuple[torch.Tensor, Any]:
r"""Mapping: x -> Q(x, \*)."""
x = torch.as_tensor(x, device=self.device, dtype=torch.float32)
return self.net(x.reshape(-1, self.c, self.w, self.h)), state
def get_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=2000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument(
'--gamma', type=float, default=0.9, help='a smaller gamma favors earlier win'
)
parser.add_argument(
'--n-pistons',
type=int,
default=3,
help='Number of pistons(agents) in the env'
)
parser.add_argument('--n-step', type=int, default=100)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=500)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--episode-per-collect', type=int, default=16)
parser.add_argument('--repeat-per-collect', type=int, default=2)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=32)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
'--watch',
default=False,
action='store_true',
help='no training, '
'watch the play of pre-trained models'
)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
# ppo special
parser.add_argument('--vf-coef', type=float, default=0.25)
parser.add_argument('--ent-coef', type=float, default=0.0)
parser.add_argument('--eps-clip', type=float, default=0.2)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
parser.add_argument('--gae-lambda', type=float, default=0.95)
parser.add_argument('--rew-norm', type=int, default=1)
parser.add_argument('--dual-clip', type=float, default=None)
parser.add_argument('--value-clip', type=int, default=1)
parser.add_argument('--norm-adv', type=int, default=1)
parser.add_argument('--recompute-adv', type=int, default=0)
parser.add_argument('--resume', action="store_true")
parser.add_argument("--save-interval", type=int, default=4)
parser.add_argument('--render', type=float, default=0.0)
return parser
def get_args() -> argparse.Namespace:
parser = get_parser()
return parser.parse_known_args()[0]
def get_env(args: argparse.Namespace = get_args()):
return PettingZooEnv(pistonball_v6.env(continuous=True, n_pistons=args.n_pistons))
def get_agents(
args: argparse.Namespace = get_args(),
agents: Optional[List[BasePolicy]] = None,
optims: Optional[List[torch.optim.Optimizer]] = None,
) -> Tuple[BasePolicy, List[torch.optim.Optimizer], List]:
env = get_env()
observation_space = env.observation_space['observation'] if isinstance(
env.observation_space, gym.spaces.Dict
) else env.observation_space
args.state_shape = observation_space.shape or observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
if agents is None:
agents = []
optims = []
for _ in range(args.n_pistons):
# model
net = DQN(
observation_space.shape[2],
observation_space.shape[1],
observation_space.shape[0],
device=args.device
).to(args.device)
actor = ActorProb(
net, args.action_shape, max_action=args.max_action, device=args.device
).to(args.device)
net2 = DQN(
observation_space.shape[2],
observation_space.shape[1],
observation_space.shape[0],
device=args.device
).to(args.device)
critic = Critic(net2, device=args.device).to(args.device)
for m in set(actor.modules()).union(critic.modules()):
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(
set(actor.parameters()).union(critic.parameters()), lr=args.lr
)
def dist(*logits):
return Independent(Normal(*logits), 1)
agent = PPOPolicy(
actor,
critic,
optim,
dist,
discount_factor=args.gamma,
max_grad_norm=args.max_grad_norm,
eps_clip=args.eps_clip,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv,
# dual_clip=args.dual_clip,
# dual clip cause monotonically increasing log_std :)
value_clip=args.value_clip,
gae_lambda=args.gae_lambda,
action_space=env.action_space
)
agents.append(agent)
optims.append(optim)
policy = MultiAgentPolicyManager(
agents, env, action_scaling=True, action_bound_method='clip'
)
return policy, optims, env.agents
def train_agent(
args: argparse.Namespace = get_args(),
agents: Optional[List[BasePolicy]] = None,
optims: Optional[List[torch.optim.Optimizer]] = None,
) -> Tuple[dict, BasePolicy]:
train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)])
test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
policy, optim, agents = get_agents(args, agents=agents, optims=optims)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=False # True
)
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, 'pistonball', 'dqn')
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
def save_best_fn(policy):
pass
def stop_fn(mean_rewards):
return False
def train_fn(epoch, env_step):
[agent.set_eps(args.eps_train) for agent in policy.policies.values()]
def test_fn(epoch, env_step):
[agent.set_eps(args.eps_test) for agent in policy.policies.values()]
def reward_metric(rews):
return rews[:, 0]
# trainer
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
episode_per_collect=args.episode_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
resume_from_log=args.resume
)
return result, policy
def watch(
args: argparse.Namespace = get_args(), policy: Optional[BasePolicy] = None
) -> None:
env = DummyVectorEnv([get_env])
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews[:, 0].mean()}, length: {lens.mean()}")