Tianshou/tianshou/utils/net/discrete.py

108 lines
3.7 KiB
Python
Raw Normal View History

import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
from typing import Any, Dict, Tuple, Union, Optional, Sequence
from tianshou.utils.net.common import MLP
class Actor(nn.Module):
"""Simple actor network.
Will create an actor operated in discrete action space with structure of
preprocess_net ---> action_shape.
:param preprocess_net: a self-defined preprocess_net which output a
flattened hidden state.
:param action_shape: a sequence of int for the shape of action.
:param hidden_sizes: a sequence of int for constructing the MLP after
preprocess_net. Default to empty sequence (where the MLP now contains
only a single linear layer).
:param bool softmax_output: whether to apply a softmax layer over the last
layer's output.
:param int preprocess_net_output_dim: the output dimension of
preprocess_net.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
.. seealso::
Please refer to :class:`~tianshou.utils.net.common.Net` as an instance
of how preprocess_net is suggested to be defined.
"""
def __init__(
self,
preprocess_net: nn.Module,
action_shape: Sequence[int],
hidden_sizes: Sequence[int] = (),
softmax_output: bool = True,
preprocess_net_output_dim: Optional[int] = None,
) -> None:
super().__init__()
self.preprocess = preprocess_net
self.output_dim = np.prod(action_shape)
input_dim = getattr(preprocess_net, "output_dim",
preprocess_net_output_dim)
self.last = MLP(input_dim, self.output_dim, hidden_sizes)
self.softmax_output = softmax_output
def forward(
self,
s: Union[np.ndarray, torch.Tensor],
state: Optional[Any] = None,
info: Dict[str, Any] = {},
) -> Tuple[torch.Tensor, Any]:
r"""Mapping: s -> Q(s, \*)."""
logits, h = self.preprocess(s, state)
logits = self.last(logits)
if self.softmax_output:
logits = F.softmax(logits, dim=-1)
return logits, h
class Critic(nn.Module):
"""Simple critic network. Will create an actor operated in discrete \
action space with structure of preprocess_net ---> 1(q value).
:param preprocess_net: a self-defined preprocess_net which output a
flattened hidden state.
:param hidden_sizes: a sequence of int for constructing the MLP after
preprocess_net. Default to empty sequence (where the MLP now contains
only a single linear layer).
:param int last_size: the output dimension of Critic network. Default to 1.
:param int preprocess_net_output_dim: the output dimension of
preprocess_net.
For advanced usage (how to customize the network), please refer to
:ref:`build_the_network`.
.. seealso::
Please refer to :class:`~tianshou.utils.net.common.Net` as an instance
of how preprocess_net is suggested to be defined.
"""
def __init__(
self,
preprocess_net: nn.Module,
hidden_sizes: Sequence[int] = (),
last_size: int = 1,
preprocess_net_output_dim: Optional[int] = None,
) -> None:
super().__init__()
self.preprocess = preprocess_net
self.output_dim = last_size
input_dim = getattr(preprocess_net, "output_dim",
preprocess_net_output_dim)
self.last = MLP(input_dim, last_size, hidden_sizes)
def forward(
self, s: Union[np.ndarray, torch.Tensor], **kwargs: Any
) -> torch.Tensor:
"""Mapping: s -> V(s)."""
logits, _ = self.preprocess(s, state=kwargs.get("state", None))
return self.last(logits)