Tianshou/test/discrete/test_drqn.py

117 lines
4.6 KiB
Python
Raw Normal View History

2020-04-11 16:54:27 +08:00
import os
2020-04-08 21:13:15 +08:00
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.utils import BasicLogger
from tianshou.env import DummyVectorEnv
2020-04-08 21:13:15 +08:00
from tianshou.trainer import offpolicy_trainer
from tianshou.utils.net.common import Recurrent
from tianshou.data import Collector, VectorReplayBuffer
2020-04-08 21:13:15 +08:00
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=1)
2020-04-08 21:13:15 +08:00
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--stack-num', type=int, default=4)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.95)
parser.add_argument('--n-step', type=int, default=3)
2020-04-08 21:13:15 +08:00
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=20000)
parser.add_argument('--update-per-step', type=float, default=1 / 16)
parser.add_argument('--step-per-collect', type=int, default=16)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=2)
parser.add_argument('--training-num', type=int, default=16)
2020-04-08 21:13:15 +08:00
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_drqn(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
2020-04-08 21:13:15 +08:00
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
2020-04-08 21:13:15 +08:00
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Recurrent(args.layer_num, args.state_shape,
args.action_shape, args.device).to(args.device)
2020-04-08 21:13:15 +08:00
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net, optim, args.gamma, args.n_step,
target_update_freq=args.target_update_freq)
# collector
buffer = VectorReplayBuffer(
args.buffer_size, buffer_num=len(train_envs),
stack_num=args.stack_num, ignore_obs_next=True)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
2020-04-08 21:13:15 +08:00
# the stack_num is for RNN training: sample framestack obs
test_collector = Collector(policy, test_envs, exploration_noise=True)
2020-04-08 21:13:15 +08:00
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
2020-04-08 21:13:15 +08:00
# log
2020-04-11 16:54:27 +08:00
log_path = os.path.join(args.logdir, args.task, 'drqn')
writer = SummaryWriter(log_path)
logger = BasicLogger(writer)
2020-04-11 16:54:27 +08:00
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
2020-04-08 21:13:15 +08:00
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
2020-04-08 21:13:15 +08:00
def train_fn(epoch, env_step):
2020-04-08 21:13:15 +08:00
policy.set_eps(args.eps_train)
def test_fn(epoch, env_step):
2020-04-08 21:13:15 +08:00
policy.set_eps(args.eps_test)
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.step_per_collect, args.test_num,
args.batch_size, update_per_step=args.update_per_step,
train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn,
save_fn=save_fn, logger=logger)
2020-04-08 21:13:15 +08:00
assert stop_fn(result['best_reward'])
2020-04-08 21:13:15 +08:00
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
2020-04-08 21:13:15 +08:00
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
2020-04-08 21:13:15 +08:00
if __name__ == '__main__':
test_drqn(get_args())