154 lines
6.1 KiB
Python
154 lines
6.1 KiB
Python
|
import os
|
||
|
import gym
|
||
|
import torch
|
||
|
import pprint
|
||
|
import argparse
|
||
|
import numpy as np
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
|
||
|
from tianshou.policy import FQFPolicy
|
||
|
from tianshou.utils import BasicLogger
|
||
|
from tianshou.env import DummyVectorEnv
|
||
|
from tianshou.utils.net.common import Net
|
||
|
from tianshou.trainer import offpolicy_trainer
|
||
|
from tianshou.utils.net.discrete import FractionProposalNetwork, FullQuantileFunction
|
||
|
from tianshou.data import Collector, VectorReplayBuffer, PrioritizedVectorReplayBuffer
|
||
|
|
||
|
|
||
|
def get_args():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('--task', type=str, default='CartPole-v0')
|
||
|
parser.add_argument('--seed', type=int, default=0)
|
||
|
parser.add_argument('--eps-test', type=float, default=0.05)
|
||
|
parser.add_argument('--eps-train', type=float, default=0.1)
|
||
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
||
|
parser.add_argument('--lr', type=float, default=3e-3)
|
||
|
parser.add_argument('--fraction-lr', type=float, default=2.5e-9)
|
||
|
parser.add_argument('--gamma', type=float, default=0.9)
|
||
|
parser.add_argument('--num-fractions', type=int, default=32)
|
||
|
parser.add_argument('--num-cosines', type=int, default=64)
|
||
|
parser.add_argument('--ent-coef', type=float, default=10.)
|
||
|
parser.add_argument('--n-step', type=int, default=3)
|
||
|
parser.add_argument('--target-update-freq', type=int, default=320)
|
||
|
parser.add_argument('--epoch', type=int, default=10)
|
||
|
parser.add_argument('--step-per-epoch', type=int, default=10000)
|
||
|
parser.add_argument('--step-per-collect', type=int, default=10)
|
||
|
parser.add_argument('--update-per-step', type=float, default=0.1)
|
||
|
parser.add_argument('--batch-size', type=int, default=64)
|
||
|
parser.add_argument('--hidden-sizes', type=int,
|
||
|
nargs='*', default=[64, 64, 64])
|
||
|
parser.add_argument('--training-num', type=int, default=10)
|
||
|
parser.add_argument('--test-num', type=int, default=100)
|
||
|
parser.add_argument('--logdir', type=str, default='log')
|
||
|
parser.add_argument('--render', type=float, default=0.)
|
||
|
parser.add_argument('--prioritized-replay',
|
||
|
action="store_true", default=False)
|
||
|
parser.add_argument('--alpha', type=float, default=0.6)
|
||
|
parser.add_argument('--beta', type=float, default=0.4)
|
||
|
parser.add_argument(
|
||
|
'--device', type=str,
|
||
|
default='cuda' if torch.cuda.is_available() else 'cpu')
|
||
|
args = parser.parse_known_args()[0]
|
||
|
return args
|
||
|
|
||
|
|
||
|
def test_fqf(args=get_args()):
|
||
|
env = gym.make(args.task)
|
||
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
||
|
args.action_shape = env.action_space.shape or env.action_space.n
|
||
|
# train_envs = gym.make(args.task)
|
||
|
# you can also use tianshou.env.SubprocVectorEnv
|
||
|
train_envs = DummyVectorEnv(
|
||
|
[lambda: gym.make(args.task) for _ in range(args.training_num)])
|
||
|
# test_envs = gym.make(args.task)
|
||
|
test_envs = DummyVectorEnv(
|
||
|
[lambda: gym.make(args.task) for _ in range(args.test_num)])
|
||
|
# seed
|
||
|
np.random.seed(args.seed)
|
||
|
torch.manual_seed(args.seed)
|
||
|
train_envs.seed(args.seed)
|
||
|
test_envs.seed(args.seed)
|
||
|
# model
|
||
|
feature_net = Net(args.state_shape, args.hidden_sizes[-1],
|
||
|
hidden_sizes=args.hidden_sizes[:-1], device=args.device,
|
||
|
softmax=False)
|
||
|
net = FullQuantileFunction(
|
||
|
feature_net, args.action_shape, args.hidden_sizes,
|
||
|
num_cosines=args.num_cosines, device=args.device
|
||
|
)
|
||
|
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
|
||
|
fraction_net = FractionProposalNetwork(args.num_fractions, net.input_dim)
|
||
|
fraction_optim = torch.optim.RMSprop(
|
||
|
fraction_net.parameters(), lr=args.fraction_lr
|
||
|
)
|
||
|
policy = FQFPolicy(
|
||
|
net, optim, fraction_net, fraction_optim, args.gamma, args.num_fractions,
|
||
|
args.ent_coef, args.n_step, target_update_freq=args.target_update_freq
|
||
|
).to(args.device)
|
||
|
# buffer
|
||
|
if args.prioritized_replay:
|
||
|
buf = PrioritizedVectorReplayBuffer(
|
||
|
args.buffer_size, buffer_num=len(train_envs),
|
||
|
alpha=args.alpha, beta=args.beta)
|
||
|
else:
|
||
|
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
|
||
|
# collector
|
||
|
train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
|
||
|
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
||
|
# policy.set_eps(1)
|
||
|
train_collector.collect(n_step=args.batch_size * args.training_num)
|
||
|
# log
|
||
|
log_path = os.path.join(args.logdir, args.task, 'fqf')
|
||
|
writer = SummaryWriter(log_path)
|
||
|
logger = BasicLogger(writer)
|
||
|
|
||
|
def save_fn(policy):
|
||
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
||
|
|
||
|
def stop_fn(mean_rewards):
|
||
|
return mean_rewards >= env.spec.reward_threshold
|
||
|
|
||
|
def train_fn(epoch, env_step):
|
||
|
# eps annnealing, just a demo
|
||
|
if env_step <= 10000:
|
||
|
policy.set_eps(args.eps_train)
|
||
|
elif env_step <= 50000:
|
||
|
eps = args.eps_train - (env_step - 10000) / \
|
||
|
40000 * (0.9 * args.eps_train)
|
||
|
policy.set_eps(eps)
|
||
|
else:
|
||
|
policy.set_eps(0.1 * args.eps_train)
|
||
|
|
||
|
def test_fn(epoch, env_step):
|
||
|
policy.set_eps(args.eps_test)
|
||
|
|
||
|
# trainer
|
||
|
result = offpolicy_trainer(
|
||
|
policy, train_collector, test_collector, args.epoch,
|
||
|
args.step_per_epoch, args.step_per_collect, args.test_num,
|
||
|
args.batch_size, train_fn=train_fn, test_fn=test_fn,
|
||
|
stop_fn=stop_fn, save_fn=save_fn, logger=logger,
|
||
|
update_per_step=args.update_per_step)
|
||
|
assert stop_fn(result['best_reward'])
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
pprint.pprint(result)
|
||
|
# Let's watch its performance!
|
||
|
env = gym.make(args.task)
|
||
|
policy.eval()
|
||
|
policy.set_eps(args.eps_test)
|
||
|
collector = Collector(policy, env)
|
||
|
result = collector.collect(n_episode=1, render=args.render)
|
||
|
rews, lens = result["rews"], result["lens"]
|
||
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
||
|
|
||
|
|
||
|
def test_pfqf(args=get_args()):
|
||
|
args.prioritized_replay = True
|
||
|
args.gamma = .95
|
||
|
test_fqf(args)
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
test_fqf(get_args())
|