68 lines
2.3 KiB
Python
Raw Normal View History

from abc import ABC, abstractmethod
2023-09-20 13:15:06 +02:00
from typing import Any
import torch
from torch.optim import Adam, RMSprop
from tianshou.utils.string import ToStringMixin
class OptimizerFactory(ABC, ToStringMixin):
# TODO: Is it OK to assume that all optimizers have a learning rate argument?
# Right now, the learning rate is typically a configuration parameter.
# If we drop the assumption, we can't have that and will need to move the parameter
# to the optimizer factory, which is inconvenient for the user.
@abstractmethod
2023-09-20 09:29:34 +02:00
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
pass
class OptimizerFactoryTorch(OptimizerFactory):
2023-09-20 09:29:34 +02:00
def __init__(self, optim_class: Any, **kwargs):
""":param optim_class: the optimizer class (e.g. subclass of `torch.optim.Optimizer`),
which will be passed the module parameters, the learning rate as `lr` and the
kwargs provided.
:param kwargs: keyword arguments to provide at optimizer construction
"""
self.optim_class = optim_class
self.kwargs = kwargs
2023-09-20 09:29:34 +02:00
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
return self.optim_class(module.parameters(), lr=lr, **self.kwargs)
class OptimizerFactoryAdam(OptimizerFactory):
def __init__(self, betas=(0.9, 0.999), eps=1e-08, weight_decay=0):
self.weight_decay = weight_decay
self.eps = eps
self.betas = betas
2023-09-20 09:29:34 +02:00
def create_optimizer(self, module: torch.nn.Module, lr: float) -> Adam:
return Adam(
module.parameters(),
lr=lr,
betas=self.betas,
eps=self.eps,
weight_decay=self.weight_decay,
)
class OptimizerFactoryRMSprop(OptimizerFactory):
def __init__(self, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False):
self.alpha = alpha
self.momentum = momentum
self.centered = centered
self.weight_decay = weight_decay
self.eps = eps
def create_optimizer(self, module: torch.nn.Module, lr: float) -> RMSprop:
return RMSprop(
module.parameters(),
lr=lr,
alpha=self.alpha,
eps=self.eps,
weight_decay=self.weight_decay,
momentum=self.momentum,
centered=self.centered,
)