2023-09-19 18:53:11 +02:00
|
|
|
from abc import ABC, abstractmethod
|
2023-09-20 13:15:06 +02:00
|
|
|
from typing import Any
|
2023-09-19 18:53:11 +02:00
|
|
|
|
|
|
|
import torch
|
2023-09-28 14:28:03 +02:00
|
|
|
from torch.optim import Adam, RMSprop
|
2023-09-19 18:53:11 +02:00
|
|
|
|
2023-10-03 21:14:22 +02:00
|
|
|
from tianshou.utils.string import ToStringMixin
|
2023-09-19 18:53:11 +02:00
|
|
|
|
2023-10-03 21:14:22 +02:00
|
|
|
|
|
|
|
class OptimizerFactory(ABC, ToStringMixin):
|
2023-09-27 17:20:35 +02:00
|
|
|
# TODO: Is it OK to assume that all optimizers have a learning rate argument?
|
|
|
|
# Right now, the learning rate is typically a configuration parameter.
|
|
|
|
# If we drop the assumption, we can't have that and will need to move the parameter
|
|
|
|
# to the optimizer factory, which is inconvenient for the user.
|
2023-09-19 18:53:11 +02:00
|
|
|
@abstractmethod
|
2023-09-20 09:29:34 +02:00
|
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
|
2023-09-19 18:53:11 +02:00
|
|
|
pass
|
|
|
|
|
|
|
|
|
2023-09-27 17:20:35 +02:00
|
|
|
class OptimizerFactoryTorch(OptimizerFactory):
|
2023-09-20 09:29:34 +02:00
|
|
|
def __init__(self, optim_class: Any, **kwargs):
|
2023-09-27 17:20:35 +02:00
|
|
|
""":param optim_class: the optimizer class (e.g. subclass of `torch.optim.Optimizer`),
|
|
|
|
which will be passed the module parameters, the learning rate as `lr` and the
|
|
|
|
kwargs provided.
|
|
|
|
:param kwargs: keyword arguments to provide at optimizer construction
|
|
|
|
"""
|
2023-09-19 18:53:11 +02:00
|
|
|
self.optim_class = optim_class
|
|
|
|
self.kwargs = kwargs
|
|
|
|
|
2023-09-20 09:29:34 +02:00
|
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> torch.optim.Optimizer:
|
|
|
|
return self.optim_class(module.parameters(), lr=lr, **self.kwargs)
|
2023-09-19 18:53:11 +02:00
|
|
|
|
|
|
|
|
2023-09-27 17:20:35 +02:00
|
|
|
class OptimizerFactoryAdam(OptimizerFactory):
|
2023-09-21 12:36:27 +02:00
|
|
|
def __init__(self, betas=(0.9, 0.999), eps=1e-08, weight_decay=0):
|
|
|
|
self.weight_decay = weight_decay
|
|
|
|
self.eps = eps
|
|
|
|
self.betas = betas
|
|
|
|
|
2023-09-20 09:29:34 +02:00
|
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> Adam:
|
2023-09-21 12:36:27 +02:00
|
|
|
return Adam(
|
|
|
|
module.parameters(),
|
|
|
|
lr=lr,
|
|
|
|
betas=self.betas,
|
|
|
|
eps=self.eps,
|
|
|
|
weight_decay=self.weight_decay,
|
|
|
|
)
|
2023-09-28 14:28:03 +02:00
|
|
|
|
|
|
|
|
|
|
|
class OptimizerFactoryRMSprop(OptimizerFactory):
|
|
|
|
def __init__(self, alpha=0.99, eps=1e-08, weight_decay=0, momentum=0, centered=False):
|
|
|
|
self.alpha = alpha
|
|
|
|
self.momentum = momentum
|
|
|
|
self.centered = centered
|
|
|
|
self.weight_decay = weight_decay
|
|
|
|
self.eps = eps
|
|
|
|
|
|
|
|
def create_optimizer(self, module: torch.nn.Module, lr: float) -> RMSprop:
|
|
|
|
return RMSprop(
|
|
|
|
module.parameters(),
|
|
|
|
lr=lr,
|
|
|
|
alpha=self.alpha,
|
|
|
|
eps=self.eps,
|
|
|
|
weight_decay=self.weight_decay,
|
|
|
|
momentum=self.momentum,
|
|
|
|
centered=self.centered,
|
|
|
|
)
|