| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | import argparse | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  | import os | 
					
						
							|  |  |  | import pickle | 
					
						
							|  |  |  | import pprint | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | import gym | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  | import numpy as np | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | import torch | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  | from torch.utils.tensorboard import SummaryWriter | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from tianshou.data import Collector | 
					
						
							|  |  |  | from tianshou.env import DummyVectorEnv | 
					
						
							|  |  |  | from tianshou.policy import DiscreteCRRPolicy | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | from tianshou.trainer import offline_trainer | 
					
						
							|  |  |  | from tianshou.utils import TensorboardLogger | 
					
						
							|  |  |  | from tianshou.utils.net.common import Net | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_args(): | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser() | 
					
						
							|  |  |  |     parser.add_argument("--task", type=str, default="CartPole-v0") | 
					
						
							|  |  |  |     parser.add_argument("--seed", type=int, default=1626) | 
					
						
							|  |  |  |     parser.add_argument("--lr", type=float, default=7e-4) | 
					
						
							|  |  |  |     parser.add_argument("--gamma", type=float, default=0.99) | 
					
						
							|  |  |  |     parser.add_argument("--n-step", type=int, default=3) | 
					
						
							|  |  |  |     parser.add_argument("--target-update-freq", type=int, default=320) | 
					
						
							|  |  |  |     parser.add_argument("--epoch", type=int, default=5) | 
					
						
							|  |  |  |     parser.add_argument("--update-per-epoch", type=int, default=1000) | 
					
						
							|  |  |  |     parser.add_argument("--batch-size", type=int, default=64) | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |     parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  |     parser.add_argument("--test-num", type=int, default=100) | 
					
						
							|  |  |  |     parser.add_argument("--logdir", type=str, default="log") | 
					
						
							|  |  |  |     parser.add_argument("--render", type=float, default=0.) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         "--load-buffer-name", | 
					
						
							|  |  |  |         type=str, | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  |         default="./expert_DQN_CartPole-v0.pkl", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         "--device", | 
					
						
							|  |  |  |         type=str, | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  |         default="cuda" if torch.cuda.is_available() else "cpu", | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     args = parser.parse_known_args()[0] | 
					
						
							|  |  |  |     return args | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_discrete_crr(args=get_args()): | 
					
						
							|  |  |  |     # envs | 
					
						
							|  |  |  |     env = gym.make(args.task) | 
					
						
							|  |  |  |     if args.task == 'CartPole-v0': | 
					
						
							|  |  |  |         env.spec.reward_threshold = 190  # lower the goal | 
					
						
							|  |  |  |     args.state_shape = env.observation_space.shape or env.observation_space.n | 
					
						
							|  |  |  |     args.action_shape = env.action_space.shape or env.action_space.n | 
					
						
							|  |  |  |     test_envs = DummyVectorEnv( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.test_num)] | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  |     # seed | 
					
						
							|  |  |  |     np.random.seed(args.seed) | 
					
						
							|  |  |  |     torch.manual_seed(args.seed) | 
					
						
							|  |  |  |     test_envs.seed(args.seed) | 
					
						
							|  |  |  |     # model | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |     actor = Net( | 
					
						
							|  |  |  |         args.state_shape, | 
					
						
							|  |  |  |         args.action_shape, | 
					
						
							|  |  |  |         hidden_sizes=args.hidden_sizes, | 
					
						
							|  |  |  |         device=args.device, | 
					
						
							|  |  |  |         softmax=False | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     critic = Net( | 
					
						
							|  |  |  |         args.state_shape, | 
					
						
							|  |  |  |         args.action_shape, | 
					
						
							|  |  |  |         hidden_sizes=args.hidden_sizes, | 
					
						
							|  |  |  |         device=args.device, | 
					
						
							|  |  |  |         softmax=False | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     optim = torch.optim.Adam( | 
					
						
							|  |  |  |         list(actor.parameters()) + list(critic.parameters()), lr=args.lr | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     policy = DiscreteCRRPolicy( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         actor, | 
					
						
							|  |  |  |         critic, | 
					
						
							|  |  |  |         optim, | 
					
						
							|  |  |  |         args.gamma, | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  |         target_update_freq=args.target_update_freq, | 
					
						
							|  |  |  |     ).to(args.device) | 
					
						
							|  |  |  |     # buffer | 
					
						
							|  |  |  |     assert os.path.exists(args.load_buffer_name), \ | 
					
						
							|  |  |  |         "Please run test_dqn.py first to get expert's data buffer." | 
					
						
							|  |  |  |     buffer = pickle.load(open(args.load_buffer_name, "rb")) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # collector | 
					
						
							|  |  |  |     test_collector = Collector(policy, test_envs, exploration_noise=True) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     log_path = os.path.join(args.logdir, args.task, 'discrete_cql') | 
					
						
							|  |  |  |     writer = SummaryWriter(log_path) | 
					
						
							| 
									
										
										
										
											2021-08-30 10:35:02 -04:00
										 |  |  |     logger = TensorboardLogger(writer) | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def save_fn(policy): | 
					
						
							|  |  |  |         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def stop_fn(mean_rewards): | 
					
						
							|  |  |  |         return mean_rewards >= env.spec.reward_threshold | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     result = offline_trainer( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         policy, | 
					
						
							|  |  |  |         buffer, | 
					
						
							|  |  |  |         test_collector, | 
					
						
							|  |  |  |         args.epoch, | 
					
						
							|  |  |  |         args.update_per_epoch, | 
					
						
							|  |  |  |         args.test_num, | 
					
						
							|  |  |  |         args.batch_size, | 
					
						
							|  |  |  |         stop_fn=stop_fn, | 
					
						
							|  |  |  |         save_fn=save_fn, | 
					
						
							|  |  |  |         logger=logger | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-05-18 22:29:56 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     assert stop_fn(result['best_reward']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if __name__ == '__main__': | 
					
						
							|  |  |  |         pprint.pprint(result) | 
					
						
							|  |  |  |         # Let's watch its performance! | 
					
						
							|  |  |  |         env = gym.make(args.task) | 
					
						
							|  |  |  |         policy.eval() | 
					
						
							|  |  |  |         collector = Collector(policy, env) | 
					
						
							|  |  |  |         result = collector.collect(n_episode=1, render=args.render) | 
					
						
							|  |  |  |         rews, lens = result["rews"], result["lens"] | 
					
						
							|  |  |  |         print(f"Final reward: {rews.mean()}, length: {lens.mean()}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							|  |  |  |     test_discrete_crr(get_args()) |