| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | import argparse | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  | import os | 
					
						
							|  |  |  | import pickle | 
					
						
							|  |  |  | import pprint | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | import gym | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  | import numpy as np | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | import torch | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  | from torch.utils.tensorboard import SummaryWriter | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer | 
					
						
							|  |  |  | from tianshou.env import DummyVectorEnv | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  | from tianshou.policy import RainbowPolicy | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | from tianshou.trainer import offpolicy_trainer | 
					
						
							| 
									
										
										
										
											2021-08-30 10:35:02 -04:00
										 |  |  | from tianshou.utils import TensorboardLogger | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  | from tianshou.utils.net.common import Net | 
					
						
							|  |  |  | from tianshou.utils.net.discrete import NoisyLinear | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_args(): | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser() | 
					
						
							|  |  |  |     parser.add_argument('--task', type=str, default='CartPole-v0') | 
					
						
							|  |  |  |     parser.add_argument('--seed', type=int, default=1626) | 
					
						
							|  |  |  |     parser.add_argument('--eps-test', type=float, default=0.05) | 
					
						
							|  |  |  |     parser.add_argument('--eps-train', type=float, default=0.1) | 
					
						
							|  |  |  |     parser.add_argument('--buffer-size', type=int, default=20000) | 
					
						
							|  |  |  |     parser.add_argument('--lr', type=float, default=1e-3) | 
					
						
							|  |  |  |     parser.add_argument('--gamma', type=float, default=0.9) | 
					
						
							|  |  |  |     parser.add_argument('--num-atoms', type=int, default=51) | 
					
						
							|  |  |  |     parser.add_argument('--v-min', type=float, default=-10.) | 
					
						
							|  |  |  |     parser.add_argument('--v-max', type=float, default=10.) | 
					
						
							|  |  |  |     parser.add_argument('--noisy-std', type=float, default=0.1) | 
					
						
							|  |  |  |     parser.add_argument('--n-step', type=int, default=3) | 
					
						
							|  |  |  |     parser.add_argument('--target-update-freq', type=int, default=320) | 
					
						
							|  |  |  |     parser.add_argument('--epoch', type=int, default=10) | 
					
						
							|  |  |  |     parser.add_argument('--step-per-epoch', type=int, default=8000) | 
					
						
							|  |  |  |     parser.add_argument('--step-per-collect', type=int, default=8) | 
					
						
							|  |  |  |     parser.add_argument('--update-per-step', type=float, default=0.125) | 
					
						
							|  |  |  |     parser.add_argument('--batch-size', type=int, default=64) | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         '--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128] | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     parser.add_argument('--training-num', type=int, default=8) | 
					
						
							|  |  |  |     parser.add_argument('--test-num', type=int, default=100) | 
					
						
							|  |  |  |     parser.add_argument('--logdir', type=str, default='log') | 
					
						
							|  |  |  |     parser.add_argument('--render', type=float, default=0.) | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |     parser.add_argument('--prioritized-replay', action="store_true", default=False) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     parser.add_argument('--alpha', type=float, default=0.6) | 
					
						
							|  |  |  |     parser.add_argument('--beta', type=float, default=0.4) | 
					
						
							|  |  |  |     parser.add_argument('--beta-final', type=float, default=1.) | 
					
						
							|  |  |  |     parser.add_argument('--resume', action="store_true") | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu' | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     parser.add_argument("--save-interval", type=int, default=4) | 
					
						
							|  |  |  |     args = parser.parse_known_args()[0] | 
					
						
							|  |  |  |     return args | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_rainbow(args=get_args()): | 
					
						
							|  |  |  |     env = gym.make(args.task) | 
					
						
							|  |  |  |     args.state_shape = env.observation_space.shape or env.observation_space.n | 
					
						
							|  |  |  |     args.action_shape = env.action_space.shape or env.action_space.n | 
					
						
							|  |  |  |     # train_envs = gym.make(args.task) | 
					
						
							|  |  |  |     # you can also use tianshou.env.SubprocVectorEnv | 
					
						
							|  |  |  |     train_envs = DummyVectorEnv( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.training_num)] | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     # test_envs = gym.make(args.task) | 
					
						
							|  |  |  |     test_envs = DummyVectorEnv( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.test_num)] | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     # seed | 
					
						
							|  |  |  |     np.random.seed(args.seed) | 
					
						
							|  |  |  |     torch.manual_seed(args.seed) | 
					
						
							|  |  |  |     train_envs.seed(args.seed) | 
					
						
							|  |  |  |     test_envs.seed(args.seed) | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     # model | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def noisy_linear(x, y): | 
					
						
							|  |  |  |         return NoisyLinear(x, y, args.noisy_std) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |     net = Net( | 
					
						
							|  |  |  |         args.state_shape, | 
					
						
							|  |  |  |         args.action_shape, | 
					
						
							|  |  |  |         hidden_sizes=args.hidden_sizes, | 
					
						
							|  |  |  |         device=args.device, | 
					
						
							|  |  |  |         softmax=True, | 
					
						
							|  |  |  |         num_atoms=args.num_atoms, | 
					
						
							|  |  |  |         dueling_param=({ | 
					
						
							|  |  |  |             "linear_layer": noisy_linear | 
					
						
							|  |  |  |         }, { | 
					
						
							|  |  |  |             "linear_layer": noisy_linear | 
					
						
							|  |  |  |         }) | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     optim = torch.optim.Adam(net.parameters(), lr=args.lr) | 
					
						
							|  |  |  |     policy = RainbowPolicy( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         net, | 
					
						
							|  |  |  |         optim, | 
					
						
							|  |  |  |         args.gamma, | 
					
						
							|  |  |  |         args.num_atoms, | 
					
						
							|  |  |  |         args.v_min, | 
					
						
							|  |  |  |         args.v_max, | 
					
						
							|  |  |  |         args.n_step, | 
					
						
							|  |  |  |         target_update_freq=args.target_update_freq | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     ).to(args.device) | 
					
						
							|  |  |  |     # buffer | 
					
						
							|  |  |  |     if args.prioritized_replay: | 
					
						
							|  |  |  |         buf = PrioritizedVectorReplayBuffer( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |             args.buffer_size, | 
					
						
							|  |  |  |             buffer_num=len(train_envs), | 
					
						
							|  |  |  |             alpha=args.alpha, | 
					
						
							|  |  |  |             beta=args.beta, | 
					
						
							|  |  |  |             weight_norm=True | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     else: | 
					
						
							|  |  |  |         buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs)) | 
					
						
							|  |  |  |     # collector | 
					
						
							|  |  |  |     train_collector = Collector(policy, train_envs, buf, exploration_noise=True) | 
					
						
							|  |  |  |     test_collector = Collector(policy, test_envs, exploration_noise=True) | 
					
						
							|  |  |  |     # policy.set_eps(1) | 
					
						
							|  |  |  |     train_collector.collect(n_step=args.batch_size * args.training_num) | 
					
						
							|  |  |  |     # log | 
					
						
							|  |  |  |     log_path = os.path.join(args.logdir, args.task, 'rainbow') | 
					
						
							|  |  |  |     writer = SummaryWriter(log_path) | 
					
						
							| 
									
										
										
										
											2021-08-30 10:35:02 -04:00
										 |  |  |     logger = TensorboardLogger(writer, save_interval=args.save_interval) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def save_fn(policy): | 
					
						
							|  |  |  |         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def stop_fn(mean_rewards): | 
					
						
							|  |  |  |         return mean_rewards >= env.spec.reward_threshold | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def train_fn(epoch, env_step): | 
					
						
							|  |  |  |         # eps annealing, just a demo | 
					
						
							|  |  |  |         if env_step <= 10000: | 
					
						
							|  |  |  |             policy.set_eps(args.eps_train) | 
					
						
							|  |  |  |         elif env_step <= 50000: | 
					
						
							|  |  |  |             eps = args.eps_train - (env_step - 10000) / \ | 
					
						
							|  |  |  |                 40000 * (0.9 * args.eps_train) | 
					
						
							|  |  |  |             policy.set_eps(eps) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             policy.set_eps(0.1 * args.eps_train) | 
					
						
							|  |  |  |         # beta annealing, just a demo | 
					
						
							|  |  |  |         if args.prioritized_replay: | 
					
						
							|  |  |  |             if env_step <= 10000: | 
					
						
							|  |  |  |                 beta = args.beta | 
					
						
							|  |  |  |             elif env_step <= 50000: | 
					
						
							|  |  |  |                 beta = args.beta - (env_step - 10000) / \ | 
					
						
							|  |  |  |                     40000 * (args.beta - args.beta_final) | 
					
						
							|  |  |  |             else: | 
					
						
							|  |  |  |                 beta = args.beta_final | 
					
						
							|  |  |  |             buf.set_beta(beta) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def test_fn(epoch, env_step): | 
					
						
							|  |  |  |         policy.set_eps(args.eps_test) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def save_checkpoint_fn(epoch, env_step, gradient_step): | 
					
						
							|  |  |  |         # see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         torch.save( | 
					
						
							|  |  |  |             { | 
					
						
							|  |  |  |                 'model': policy.state_dict(), | 
					
						
							|  |  |  |                 'optim': optim.state_dict(), | 
					
						
							|  |  |  |             }, os.path.join(log_path, 'checkpoint.pth') | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         pickle.dump( | 
					
						
							|  |  |  |             train_collector.buffer, | 
					
						
							|  |  |  |             open(os.path.join(log_path, 'train_buffer.pkl'), "wb") | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  | 
 | 
					
						
							|  |  |  |     if args.resume: | 
					
						
							|  |  |  |         # load from existing checkpoint | 
					
						
							|  |  |  |         print(f"Loading agent under {log_path}") | 
					
						
							|  |  |  |         ckpt_path = os.path.join(log_path, 'checkpoint.pth') | 
					
						
							|  |  |  |         if os.path.exists(ckpt_path): | 
					
						
							|  |  |  |             checkpoint = torch.load(ckpt_path, map_location=args.device) | 
					
						
							|  |  |  |             policy.load_state_dict(checkpoint['model']) | 
					
						
							|  |  |  |             policy.optim.load_state_dict(checkpoint['optim']) | 
					
						
							|  |  |  |             print("Successfully restore policy and optim.") | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             print("Fail to restore policy and optim.") | 
					
						
							|  |  |  |         buffer_path = os.path.join(log_path, 'train_buffer.pkl') | 
					
						
							|  |  |  |         if os.path.exists(buffer_path): | 
					
						
							|  |  |  |             train_collector.buffer = pickle.load(open(buffer_path, "rb")) | 
					
						
							|  |  |  |             print("Successfully restore buffer.") | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             print("Fail to restore buffer.") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # trainer | 
					
						
							|  |  |  |     result = offpolicy_trainer( | 
					
						
							| 
									
										
										
										
											2021-09-03 05:05:04 +08:00
										 |  |  |         policy, | 
					
						
							|  |  |  |         train_collector, | 
					
						
							|  |  |  |         test_collector, | 
					
						
							|  |  |  |         args.epoch, | 
					
						
							|  |  |  |         args.step_per_epoch, | 
					
						
							|  |  |  |         args.step_per_collect, | 
					
						
							|  |  |  |         args.test_num, | 
					
						
							|  |  |  |         args.batch_size, | 
					
						
							|  |  |  |         update_per_step=args.update_per_step, | 
					
						
							|  |  |  |         train_fn=train_fn, | 
					
						
							|  |  |  |         test_fn=test_fn, | 
					
						
							|  |  |  |         stop_fn=stop_fn, | 
					
						
							|  |  |  |         save_fn=save_fn, | 
					
						
							|  |  |  |         logger=logger, | 
					
						
							|  |  |  |         resume_from_log=args.resume, | 
					
						
							|  |  |  |         save_checkpoint_fn=save_checkpoint_fn | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2021-08-29 08:34:59 -07:00
										 |  |  |     assert stop_fn(result['best_reward']) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if __name__ == '__main__': | 
					
						
							|  |  |  |         pprint.pprint(result) | 
					
						
							|  |  |  |         # Let's watch its performance! | 
					
						
							|  |  |  |         env = gym.make(args.task) | 
					
						
							|  |  |  |         policy.eval() | 
					
						
							|  |  |  |         policy.set_eps(args.eps_test) | 
					
						
							|  |  |  |         collector = Collector(policy, env) | 
					
						
							|  |  |  |         result = collector.collect(n_episode=1, render=args.render) | 
					
						
							|  |  |  |         rews, lens = result["rews"], result["lens"] | 
					
						
							|  |  |  |         print(f"Final reward: {rews.mean()}, length: {lens.mean()}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_rainbow_resume(args=get_args()): | 
					
						
							|  |  |  |     args.resume = True | 
					
						
							|  |  |  |     test_rainbow(args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_prainbow(args=get_args()): | 
					
						
							|  |  |  |     args.prioritized_replay = True | 
					
						
							|  |  |  |     args.gamma = .95 | 
					
						
							|  |  |  |     args.seed = 1 | 
					
						
							|  |  |  |     test_rainbow(args) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |     test_rainbow(get_args()) |