212 lines
7.6 KiB
Python
Raw Normal View History

from __future__ import print_function
import utils
2017-11-04 01:45:55 +08:00
import copy
import sys
from collections import deque
2017-11-04 01:45:55 +08:00
'''
Settings of the Go game.
2017-11-04 01:45:55 +08:00
(1, 1) is considered as the upper left corner of the board,
(size, 1) is the lower left
'''
2017-11-04 01:45:55 +08:00
NEIGHBOR_OFFSET = [[1, 0], [-1, 0], [0, -1], [0, 1]]
class Go:
def __init__(self, **kwargs):
self.game = kwargs['game']
def _bfs(self, vertex, color, block, status):
block.append(vertex)
status[self.game._flatten(vertex)] = True
nei = self._neighbor(vertex)
for n in nei:
if not status[self.game._flatten(n)]:
if self.game.board[self.game._flatten(n)] == color:
self._bfs(n, color, block, status)
def _find_block(self, vertex):
block = []
status = [False] * (self.game.size * self.game.size)
color = self.game.board[self.game._flatten(vertex)]
self._bfs(vertex, color, block, status)
for b in block:
for n in self._neighbor(b):
if self.game.board[self.game._flatten(n)] == utils.EMPTY:
return False, block
return True, block
def _find_boarder(self, vertex):
block = []
status = [False] * (self.game.size * self.game.size)
self._bfs(vertex, utils.EMPTY, block, status)
border = []
for b in block:
for n in self._neighbor(b):
if not (n in block):
border.append(n)
return border
def _is_qi(self, color, vertex):
nei = self._neighbor(vertex)
for n in nei:
if self.game.board[self.game._flatten(n)] == utils.EMPTY:
return True
self.game.board[self.game._flatten(vertex)] = color
for n in nei:
if self.game.board[self.game._flatten(n)] == utils.another_color(color):
can_kill, block = self._find_block(n)
if can_kill:
self.game.board[self.game._flatten(vertex)] = utils.EMPTY
return True
### can not suicide
can_kill, block = self._find_block(vertex)
if can_kill:
self.game.board[self.game._flatten(vertex)] = utils.EMPTY
2017-11-04 01:45:55 +08:00
return False
self.game.board[self.game._flatten(vertex)] = utils.EMPTY
2017-11-04 01:45:55 +08:00
return True
def _check_global_isomorphous(self, color, vertex):
##backup
_board = copy.copy(self.game.board)
self.game.board[self.game._flatten(vertex)] = color
self._process_board(color, vertex)
if self.game.board in self.game.history:
res = True
else:
res = False
2017-11-04 01:45:55 +08:00
self.game.board = _board
return res
2017-11-04 01:45:55 +08:00
def _in_board(self, vertex):
x, y = vertex
if x < 1 or x > self.game.size: return False
if y < 1 or y > self.game.size: return False
return True
2017-11-04 01:45:55 +08:00
def _neighbor(self, vertex):
x, y = vertex
nei = []
for d in NEIGHBOR_OFFSET:
_x = x + d[0]
_y = y + d[1]
if self._in_board((_x, _y)):
nei.append((_x, _y))
return nei
def _process_board(self, color, vertex):
nei = self._neighbor(vertex)
for n in nei:
if self.game.board[self.game._flatten(n)] == utils.another_color(color):
can_kill, block = self._find_block(n)
if can_kill:
for b in block:
self.game.board[self.game._flatten(b)] = utils.EMPTY
def is_valid(self, color, vertex):
### in board
if not self._in_board(vertex):
return False
2017-11-04 01:45:55 +08:00
### already have stone
if not self.game.board[self.game._flatten(vertex)] == utils.EMPTY:
return False
2017-11-04 01:45:55 +08:00
### check if it is qi
if not self._is_qi(color, vertex):
return False
2017-11-04 01:45:55 +08:00
if self._check_global_isomorphous(color, vertex):
return False
2017-11-04 01:45:55 +08:00
return True
2017-11-04 01:45:55 +08:00
def do_move(self, color, vertex):
if not self.is_valid(color, vertex):
return False
self.game.board[self.game._flatten(vertex)] = color
self._process_board(color, vertex)
self.game.history.append(copy.copy(self.game.board))
self.game.latest_boards.append(copy.copy(self.game.board))
return True
2017-11-04 01:45:55 +08:00
def _find_empty(self):
idx = [i for i,x in enumerate(self.game.board) if x == utils.EMPTY ][0]
return self.game._deflatten(idx)
2017-11-04 01:45:55 +08:00
def get_score(self, is_unknown_estimation = False):
'''
is_unknown_estimation: whether use nearby stone to predict the unknown
return score from BLACK perspective.
'''
_board = copy.copy(self.game.board)
while utils.EMPTY in self.game.board:
vertex = self._find_empty()
boarder = self._find_boarder(vertex)
boarder_color = set(map(lambda v: self.game.board[self.game._flatten(v)], boarder))
if boarder_color == {utils.BLACK}:
self.game.board[self.game._flatten(vertex)] = utils.BLACK
elif boarder_color == {utils.WHITE}:
self.game.board[self.game._flatten(vertex)] = utils.WHITE
elif is_unknown_estimation:
self.game.board[self.game._flatten(vertex)] = self._predict_from_nearby(vertex)
2017-11-04 01:45:55 +08:00
else:
self.game.board[self.game._flatten(vertex)] =utils.UNKNOWN
score = 0
for i in self.game.board:
if i == utils.BLACK:
score += 1
elif i == utils.WHITE:
score -= 1
score -= self.game.komi
self.game.board = _board
return score
def _predict_from_nearby(self, vertex, neighbor_step = 3):
'''
step: the nearby 3 steps is considered
:vertex: position to be estimated
:neighbor_step: how many steps nearby
:return: the nearby positions of the input position
currently the nearby 3*3 grid is returned, altogether 4*8 points involved
'''
for step in range(1, neighbor_step + 1): # check the stones within the steps in range
neighbor_vertex_set = []
self._add_nearby_stones(neighbor_vertex_set, vertex[0] - step, vertex[1], 1, 1, neighbor_step)
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] + step, 1, -1, neighbor_step)
self._add_nearby_stones(neighbor_vertex_set, vertex[0] + step, vertex[1], -1, -1, neighbor_step)
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] - step, -1, 1, neighbor_step)
color_estimate = 0
for neighbor_vertex in neighbor_vertex_set:
color_estimate += self.game.board[self.game._flatten(neighbor_vertex)]
if color_estimate > 0:
return utils.BLACK
elif color_estimate < 0:
return utils.WHITE
def _add_nearby_stones(self, neighbor_vertex_set, start_vertex_x, start_vertex_y, x_diff, y_diff, num_step):
'''
add the nearby stones around the input vertex
:param neighbor_vertex_set: input list
:param start_vertex_x: x axis of the input vertex
:param start_vertex_y: y axis of the input vertex
:param x_diff: add x axis
:param y_diff: add y axis
:param num_step: number of steps to be added
:return:
'''
for step in xrange(num_step):
new_neighbor_vertex = (start_vertex_x, start_vertex_y)
if self._in_board(new_neighbor_vertex):
neighbor_vertex_set.append((start_vertex_x, start_vertex_y))
start_vertex_x += x_diff
start_vertex_y += y_diff