739 lines
30 KiB
Python
Raw Normal View History

Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
import logging
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
import time
from abc import ABC, abstractmethod
from collections.abc import Callable
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
from dataclasses import dataclass, field
from typing import Any, Generic, Literal, TypeAlias, TypeVar, cast
import gymnasium as gym
2020-04-14 21:11:06 +08:00
import numpy as np
import torch
from gymnasium.spaces import Box, Discrete, MultiBinary, MultiDiscrete
from numba import njit
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
from overrides import override
from torch import nn
2020-05-12 11:31:47 +08:00
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
from tianshou.data import ReplayBuffer, SequenceSummaryStats, to_numpy, to_torch_as
from tianshou.data.batch import Batch, BatchProtocol, arr_type
from tianshou.data.buffer.base import TBuffer
from tianshou.data.types import (
ActBatchProtocol,
ActStateBatchProtocol,
BatchWithReturnsProtocol,
ObsBatchProtocol,
RolloutBatchProtocol,
)
from tianshou.utils import MultipleLRSchedulers
from tianshou.utils.print import DataclassPPrintMixin
2020-03-12 22:20:33 +08:00
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
logger = logging.getLogger(__name__)
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
TLearningRateScheduler: TypeAlias = torch.optim.lr_scheduler.LRScheduler | MultipleLRSchedulers
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
@dataclass(kw_only=True)
class TrainingStats(DataclassPPrintMixin):
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
_non_loss_fields = ("train_time", "smoothed_loss")
train_time: float = 0.0
"""The time for learning models."""
# TODO: modified in the trainer but not used anywhere else. Should be refactored.
smoothed_loss: dict = field(default_factory=dict)
"""The smoothed loss statistics of the policy learn step."""
# Mainly so that we can override this in the TrainingStatsWrapper
def _get_self_dict(self) -> dict[str, Any]:
return self.__dict__
def get_loss_stats_dict(self) -> dict[str, float]:
"""Return loss statistics as a dict for logging.
Returns a dict with all fields except train_time and smoothed_loss. Moreover, fields with value None excluded,
and instances of SequenceSummaryStats are replaced by their mean.
"""
result = {}
for k, v in self._get_self_dict().items():
if k.startswith("_"):
logger.debug(f"Skipping {k=} as it starts with an underscore.")
continue
if k in self._non_loss_fields or v is None:
continue
if isinstance(v, SequenceSummaryStats):
result[k] = v.mean
else:
result[k] = v
return result
class TrainingStatsWrapper(TrainingStats):
_setattr_frozen = False
_training_stats_public_fields = TrainingStats.__dataclass_fields__.keys()
def __init__(self, wrapped_stats: TrainingStats) -> None:
"""In this particular case, super().__init__() should be called LAST in the subclass init."""
self._wrapped_stats = wrapped_stats
# HACK: special sauce for the existing attributes of the base TrainingStats class
# for some reason, delattr doesn't work here, so we need to delegate their handling
# to the wrapped stats object by always keeping the value there and in self in sync
# see also __setattr__
for k in self._training_stats_public_fields:
super().__setattr__(k, getattr(self._wrapped_stats, k))
self._setattr_frozen = True
@override
def _get_self_dict(self) -> dict[str, Any]:
return {**self._wrapped_stats._get_self_dict(), **self.__dict__}
@property
def wrapped_stats(self) -> TrainingStats:
return self._wrapped_stats
def __getattr__(self, name: str) -> Any:
return getattr(self._wrapped_stats, name)
def __setattr__(self, name: str, value: Any) -> None:
"""Setattr logic for wrapper of a dataclass with default values.
1. If name exists directly in self, set it there.
2. If it exists in self._wrapped_stats, set it there instead.
3. Special case: if name is in the base TrainingStats class, keep it in sync between self and the _wrapped_stats.
4. If name doesn't exist in either and attribute setting is frozen, raise an AttributeError.
"""
# HACK: special sauce for the existing attributes of the base TrainingStats class, see init
# Need to keep them in sync with the wrapped stats object
if name in self._training_stats_public_fields:
setattr(self._wrapped_stats, name, value)
super().__setattr__(name, value)
return
if not self._setattr_frozen:
super().__setattr__(name, value)
return
if not hasattr(self, name):
raise AttributeError(
f"Setting new attributes on StatsWrappers outside of init is not allowed. "
f"Tried to set {name=}, {value=} on {self.__class__.__name__}. \n"
f"NOTE: you may get this error if you call super().__init__() in your subclass init too early! "
f"The call to super().__init__() should be the last call in your subclass init.",
)
if hasattr(self._wrapped_stats, name):
setattr(self._wrapped_stats, name, value)
else:
super().__setattr__(name, value)
TTrainingStats = TypeVar("TTrainingStats", bound=TrainingStats)
class BasePolicy(nn.Module, Generic[TTrainingStats], ABC):
"""The base class for any RL policy.
Tianshou aims to modularize RL algorithms. It comes into several classes of
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
policies in Tianshou. All policy classes must inherit from
2020-04-06 19:36:59 +08:00
:class:`~tianshou.policy.BasePolicy`.
2020-03-13 17:49:22 +08:00
A policy class typically has the following parts:
2020-04-06 19:36:59 +08:00
* :meth:`~tianshou.policy.BasePolicy.__init__`: initialize the policy, including \
coping the target network and so on;
2020-04-10 10:47:16 +08:00
* :meth:`~tianshou.policy.BasePolicy.forward`: compute action with given \
2020-04-06 19:36:59 +08:00
observation;
* :meth:`~tianshou.policy.BasePolicy.process_fn`: pre-process data from the \
replay buffer (this function can interact with replay buffer);
* :meth:`~tianshou.policy.BasePolicy.learn`: update policy with a given batch of \
data.
* :meth:`~tianshou.policy.BasePolicy.post_process_fn`: update the replay buffer \
from the learning process (e.g., prioritized replay buffer needs to update \
the weight);
* :meth:`~tianshou.policy.BasePolicy.update`: the main interface for training, \
i.e., `process_fn -> learn -> post_process_fn`.
2020-04-06 19:36:59 +08:00
Most of the policy needs a neural network to predict the action and an
optimizer to optimize the policy. The rules of self-defined networks are:
1. Input: observation "obs" (may be a ``numpy.ndarray``, a ``torch.Tensor``, a \
dict or any others), hidden state "state" (for RNN usage), and other information \
"info" provided by the environment.
2. Output: some "logits", the next hidden state "state", and the intermediate \
result during policy forwarding procedure "policy". The "logits" could be a tuple \
instead of a ``torch.Tensor``. It depends on how the policy process the network \
output. For example, in PPO, the return of the network might be \
``(mu, sigma), state`` for Gaussian policy. The "policy" can be a Batch of \
torch.Tensor or other things, which will be stored in the replay buffer, and can \
be accessed in the policy update process (e.g. in "policy.learn()", the \
"batch.policy" is what you need).
Since :class:`~tianshou.policy.BasePolicy` inherits ``torch.nn.Module``, you can
use :class:`~tianshou.policy.BasePolicy` almost the same as ``torch.nn.Module``,
for instance, loading and saving the model:
2020-04-06 19:36:59 +08:00
::
torch.save(policy.state_dict(), "policy.pth")
policy.load_state_dict(torch.load("policy.pth"))
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
:param action_space: Env's action_space.
:param observation_space: Env's observation space. TODO: appears unused...
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param action_scaling: if True, scale the action from [-1, 1] to the range
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
of action_space. Only used if the action_space is continuous.
:param action_bound_method: method to bound action to range [-1, 1].
Only used if the action_space is continuous.
:param lr_scheduler: if not None, will be called in `policy.update()`.
2020-04-06 19:36:59 +08:00
"""
def __init__(
self,
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
*,
action_space: gym.Space,
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# TODO: does the policy actually need the observation space?
observation_space: gym.Space | None = None,
action_scaling: bool = False,
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
action_bound_method: Literal["clip", "tanh"] | None = "clip",
lr_scheduler: TLearningRateScheduler | None = None,
) -> None:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
allowed_action_bound_methods = ("clip", "tanh")
if (
action_bound_method is not None
and action_bound_method not in allowed_action_bound_methods
):
raise ValueError(
f"Got invalid {action_bound_method=}. "
f"Valid values are: {allowed_action_bound_methods}.",
)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
if action_scaling and not isinstance(action_space, Box):
raise ValueError(
f"action_scaling can only be True when action_space is Box but "
f"got: {action_space}",
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
)
2020-03-12 22:20:33 +08:00
super().__init__()
self.observation_space = observation_space
self.action_space = action_space
self._action_type: Literal["discrete", "continuous"]
if isinstance(action_space, Discrete | MultiDiscrete | MultiBinary):
self._action_type = "discrete"
elif isinstance(action_space, Box):
self._action_type = "continuous"
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
else:
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
raise ValueError(f"Unsupported action space: {action_space}.")
Add multi-agent example: tic-tac-toe (#122) * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * Improve Batch (#126) * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * minor polish * remove multibuf * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * dummy code * remove dummy * add multi-agent example: tic-tac-toe * move TicTacToeEnv to a separate file * remove dummy MANet * code refactor * move tic-tac-toe example to test * update doc with marl-example * fix docs * reduce the threshold * revert * update player id to start from 1 and change player to agent; keep coding * add reward_length argument for collector * Improve Batch (#128) * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * fix docs * fix docs * fix docs [ci skip] * fix docs [ci skip] Co-authored-by: Trinkle23897 <463003665@qq.com> * refact * re-implement Batch.stack and add testcases * add doc for Batch.stack * reward_metric * modify flag * minor fix * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix reward stat in collector * fix stat of collector, simplify test/base/env.py * fix docs * minor fix * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix * minor fix * marl-examples * add condense; bugfix for torch.Tensor; code refactor * marl example can run now * enable tic tac toe with larger board size and win-size * add test dependency * Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130) * re-implement Batch.stack and add testcases * add doc for Batch.stack * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix docs * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix Co-authored-by: Trinkle23897 <463003665@qq.com> * stash * let agent learn to play as agent 2 which is harder * code refactor * Improve collector (#125) * remove multibuf * reward_metric * make fileds with empty Batch rather than None after reset * many fixes and refactor Co-authored-by: Trinkle23897 <463003665@qq.com> * marl for tic-tac-toe and general gomoku * update default gamma to 0.1 for tic tac toe to win earlier * fix name typo; change default game config; add rew_norm option * fix pep8 * test commit * mv test dir name * add rew flag * fix torch.optim import error and madqn rew_norm * remove useless kwargs * Vector env enable select worker (#132) * Enable selecting worker for vector env step method. * Update collector to match new vecenv selective worker behavior. * Bug fix. * Fix rebase Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu> * show the last move of tictactoe by capital letters * add multi-agent tutorial * fix link * Standardized behavior of Batch.cat and misc code refactor (#137) * code refactor; remove unused kwargs; add reward_normalization for dqn * bugfix for __setitem__ with torch.Tensor; add Batch.condense * minor fix * support cat with empty Batch * remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases * support stack with empty Batch * remove condense * refactor code to reflect the shared / partial / reserved categories of keys * add is_empty(recursive=False) * doc fix * docfix and bugfix for _is_batch_set * add doc for key reservation * bugfix for algebra operators * fix cat with lens hint * code refactor * bugfix for storing None * use ValueError instead of exception * hide lens away from users * add comment for __cat * move the computation of the initial value of lens in cat_ itself. * change the place of doc string * doc fix for Batch doc string * change recursive to recurse * doc string fix * minor fix for batch doc * write tutorials to specify the standard of Batch (#142) * add doc for len exceptions * doc move; unify is_scalar_value function * remove some issubclass check * bugfix for shape of Batch(a=1) * keep moving doc * keep writing batch tutorial * draft version of Batch tutorial done * improving doc * keep improving doc * batch tutorial done * rename _is_number * rename _is_scalar * shape property do not raise exception * restore some doc string * grammarly [ci skip] * grammarly + fix warning of building docs * polish docs * trim and re-arrange batch tutorial * go straight to the point * minor fix for batch doc * add shape / len in basic usage * keep improving tutorial * unify _to_array_with_correct_type to remove duplicate code * delegate type convertion to Batch.__init__ * further delegate type convertion to Batch.__init__ * bugfix for setattr * add a _parse_value function * remove dummy function call * polish docs Co-authored-by: Trinkle23897 <463003665@qq.com> * bugfix for mapolicy * pretty code * remove debug code; remove condense * doc fix * check before get_agents in tutorials/tictactoe * tutorial * fix * minor fix for batch doc * minor polish * faster test_ttt * improve tic-tac-toe environment * change default epoch and step-per-epoch for tic-tac-toe * fix mapolicy * minor polish for mapolicy * 90% to 80% (need to change the tutorial) * win rate * show step number at board * simplify mapolicy * minor polish for mapolicy * remove MADQN * fix pep8 * change legal_actions to mask (need to update docs) * simplify maenv * fix typo * move basevecenv to single file * separate RandomAgent * update docs * grammarly * fix pep8 * win rate typo * format in cheatsheet * use bool mask directly * update doc for boolean mask Co-authored-by: Trinkle23897 <463003665@qq.com> Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com> Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-07-21 14:59:49 +08:00
self.agent_id = 0
self.updating = False
self.action_scaling = action_scaling
self.action_bound_method = action_bound_method
self.lr_scheduler = lr_scheduler
self._compile()
Add multi-agent example: tic-tac-toe (#122) * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * Improve Batch (#126) * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * minor polish * remove multibuf * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * dummy code * remove dummy * add multi-agent example: tic-tac-toe * move TicTacToeEnv to a separate file * remove dummy MANet * code refactor * move tic-tac-toe example to test * update doc with marl-example * fix docs * reduce the threshold * revert * update player id to start from 1 and change player to agent; keep coding * add reward_length argument for collector * Improve Batch (#128) * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * fix docs * fix docs * fix docs [ci skip] * fix docs [ci skip] Co-authored-by: Trinkle23897 <463003665@qq.com> * refact * re-implement Batch.stack and add testcases * add doc for Batch.stack * reward_metric * modify flag * minor fix * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix reward stat in collector * fix stat of collector, simplify test/base/env.py * fix docs * minor fix * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix * minor fix * marl-examples * add condense; bugfix for torch.Tensor; code refactor * marl example can run now * enable tic tac toe with larger board size and win-size * add test dependency * Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130) * re-implement Batch.stack and add testcases * add doc for Batch.stack * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix docs * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix Co-authored-by: Trinkle23897 <463003665@qq.com> * stash * let agent learn to play as agent 2 which is harder * code refactor * Improve collector (#125) * remove multibuf * reward_metric * make fileds with empty Batch rather than None after reset * many fixes and refactor Co-authored-by: Trinkle23897 <463003665@qq.com> * marl for tic-tac-toe and general gomoku * update default gamma to 0.1 for tic tac toe to win earlier * fix name typo; change default game config; add rew_norm option * fix pep8 * test commit * mv test dir name * add rew flag * fix torch.optim import error and madqn rew_norm * remove useless kwargs * Vector env enable select worker (#132) * Enable selecting worker for vector env step method. * Update collector to match new vecenv selective worker behavior. * Bug fix. * Fix rebase Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu> * show the last move of tictactoe by capital letters * add multi-agent tutorial * fix link * Standardized behavior of Batch.cat and misc code refactor (#137) * code refactor; remove unused kwargs; add reward_normalization for dqn * bugfix for __setitem__ with torch.Tensor; add Batch.condense * minor fix * support cat with empty Batch * remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases * support stack with empty Batch * remove condense * refactor code to reflect the shared / partial / reserved categories of keys * add is_empty(recursive=False) * doc fix * docfix and bugfix for _is_batch_set * add doc for key reservation * bugfix for algebra operators * fix cat with lens hint * code refactor * bugfix for storing None * use ValueError instead of exception * hide lens away from users * add comment for __cat * move the computation of the initial value of lens in cat_ itself. * change the place of doc string * doc fix for Batch doc string * change recursive to recurse * doc string fix * minor fix for batch doc * write tutorials to specify the standard of Batch (#142) * add doc for len exceptions * doc move; unify is_scalar_value function * remove some issubclass check * bugfix for shape of Batch(a=1) * keep moving doc * keep writing batch tutorial * draft version of Batch tutorial done * improving doc * keep improving doc * batch tutorial done * rename _is_number * rename _is_scalar * shape property do not raise exception * restore some doc string * grammarly [ci skip] * grammarly + fix warning of building docs * polish docs * trim and re-arrange batch tutorial * go straight to the point * minor fix for batch doc * add shape / len in basic usage * keep improving tutorial * unify _to_array_with_correct_type to remove duplicate code * delegate type convertion to Batch.__init__ * further delegate type convertion to Batch.__init__ * bugfix for setattr * add a _parse_value function * remove dummy function call * polish docs Co-authored-by: Trinkle23897 <463003665@qq.com> * bugfix for mapolicy * pretty code * remove debug code; remove condense * doc fix * check before get_agents in tutorials/tictactoe * tutorial * fix * minor fix for batch doc * minor polish * faster test_ttt * improve tic-tac-toe environment * change default epoch and step-per-epoch for tic-tac-toe * fix mapolicy * minor polish for mapolicy * 90% to 80% (need to change the tutorial) * win rate * show step number at board * simplify mapolicy * minor polish for mapolicy * remove MADQN * fix pep8 * change legal_actions to mask (need to update docs) * simplify maenv * fix typo * move basevecenv to single file * separate RandomAgent * update docs * grammarly * fix pep8 * win rate typo * format in cheatsheet * use bool mask directly * update doc for boolean mask Co-authored-by: Trinkle23897 <463003665@qq.com> Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com> Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-07-21 14:59:49 +08:00
@property
def action_type(self) -> Literal["discrete", "continuous"]:
return self._action_type
Add multi-agent example: tic-tac-toe (#122) * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * Improve Batch (#126) * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * minor polish * remove multibuf * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * dummy code * remove dummy * add multi-agent example: tic-tac-toe * move TicTacToeEnv to a separate file * remove dummy MANet * code refactor * move tic-tac-toe example to test * update doc with marl-example * fix docs * reduce the threshold * revert * update player id to start from 1 and change player to agent; keep coding * add reward_length argument for collector * Improve Batch (#128) * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * fix docs * fix docs * fix docs [ci skip] * fix docs [ci skip] Co-authored-by: Trinkle23897 <463003665@qq.com> * refact * re-implement Batch.stack and add testcases * add doc for Batch.stack * reward_metric * modify flag * minor fix * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix reward stat in collector * fix stat of collector, simplify test/base/env.py * fix docs * minor fix * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix * minor fix * marl-examples * add condense; bugfix for torch.Tensor; code refactor * marl example can run now * enable tic tac toe with larger board size and win-size * add test dependency * Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130) * re-implement Batch.stack and add testcases * add doc for Batch.stack * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix docs * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix Co-authored-by: Trinkle23897 <463003665@qq.com> * stash * let agent learn to play as agent 2 which is harder * code refactor * Improve collector (#125) * remove multibuf * reward_metric * make fileds with empty Batch rather than None after reset * many fixes and refactor Co-authored-by: Trinkle23897 <463003665@qq.com> * marl for tic-tac-toe and general gomoku * update default gamma to 0.1 for tic tac toe to win earlier * fix name typo; change default game config; add rew_norm option * fix pep8 * test commit * mv test dir name * add rew flag * fix torch.optim import error and madqn rew_norm * remove useless kwargs * Vector env enable select worker (#132) * Enable selecting worker for vector env step method. * Update collector to match new vecenv selective worker behavior. * Bug fix. * Fix rebase Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu> * show the last move of tictactoe by capital letters * add multi-agent tutorial * fix link * Standardized behavior of Batch.cat and misc code refactor (#137) * code refactor; remove unused kwargs; add reward_normalization for dqn * bugfix for __setitem__ with torch.Tensor; add Batch.condense * minor fix * support cat with empty Batch * remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases * support stack with empty Batch * remove condense * refactor code to reflect the shared / partial / reserved categories of keys * add is_empty(recursive=False) * doc fix * docfix and bugfix for _is_batch_set * add doc for key reservation * bugfix for algebra operators * fix cat with lens hint * code refactor * bugfix for storing None * use ValueError instead of exception * hide lens away from users * add comment for __cat * move the computation of the initial value of lens in cat_ itself. * change the place of doc string * doc fix for Batch doc string * change recursive to recurse * doc string fix * minor fix for batch doc * write tutorials to specify the standard of Batch (#142) * add doc for len exceptions * doc move; unify is_scalar_value function * remove some issubclass check * bugfix for shape of Batch(a=1) * keep moving doc * keep writing batch tutorial * draft version of Batch tutorial done * improving doc * keep improving doc * batch tutorial done * rename _is_number * rename _is_scalar * shape property do not raise exception * restore some doc string * grammarly [ci skip] * grammarly + fix warning of building docs * polish docs * trim and re-arrange batch tutorial * go straight to the point * minor fix for batch doc * add shape / len in basic usage * keep improving tutorial * unify _to_array_with_correct_type to remove duplicate code * delegate type convertion to Batch.__init__ * further delegate type convertion to Batch.__init__ * bugfix for setattr * add a _parse_value function * remove dummy function call * polish docs Co-authored-by: Trinkle23897 <463003665@qq.com> * bugfix for mapolicy * pretty code * remove debug code; remove condense * doc fix * check before get_agents in tutorials/tictactoe * tutorial * fix * minor fix for batch doc * minor polish * faster test_ttt * improve tic-tac-toe environment * change default epoch and step-per-epoch for tic-tac-toe * fix mapolicy * minor polish for mapolicy * 90% to 80% (need to change the tutorial) * win rate * show step number at board * simplify mapolicy * minor polish for mapolicy * remove MADQN * fix pep8 * change legal_actions to mask (need to update docs) * simplify maenv * fix typo * move basevecenv to single file * separate RandomAgent * update docs * grammarly * fix pep8 * win rate typo * format in cheatsheet * use bool mask directly * update doc for boolean mask Co-authored-by: Trinkle23897 <463003665@qq.com> Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com> Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-07-21 14:59:49 +08:00
def set_agent_id(self, agent_id: int) -> None:
"""Set self.agent_id = agent_id, for MARL."""
Add multi-agent example: tic-tac-toe (#122) * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * Improve Batch (#126) * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * minor polish * remove multibuf * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * make fileds with empty Batch rather than None after reset * dummy code * remove dummy * add reward_length argument for collector * bugfix for reward_length * add get_final_reward_fn argument to collector to deal with marl * make sure the key type of Batch is string, and add unit tests * add is_empty() function and unit tests * enable cat of mixing dict and Batch, just like stack * dummy code * remove dummy * add multi-agent example: tic-tac-toe * move TicTacToeEnv to a separate file * remove dummy MANet * code refactor * move tic-tac-toe example to test * update doc with marl-example * fix docs * reduce the threshold * revert * update player id to start from 1 and change player to agent; keep coding * add reward_length argument for collector * Improve Batch (#128) * minor polish * improve and implement Batch.cat_ * bugfix for buffer.sample with field impt_weight * restore the usage of a.cat_(b) * fix 2 bugs in batch and add corresponding unittest * code fix for update * update is_empty to recognize empty over empty; bugfix for len * bugfix for update and add testcase * add testcase of update * fix docs * fix docs * fix docs [ci skip] * fix docs [ci skip] Co-authored-by: Trinkle23897 <463003665@qq.com> * refact * re-implement Batch.stack and add testcases * add doc for Batch.stack * reward_metric * modify flag * minor fix * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix reward stat in collector * fix stat of collector, simplify test/base/env.py * fix docs * minor fix * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix * minor fix * marl-examples * add condense; bugfix for torch.Tensor; code refactor * marl example can run now * enable tic tac toe with larger board size and win-size * add test dependency * Fix padding of inconsistent keys with Batch.stack and Batch.cat (#130) * re-implement Batch.stack and add testcases * add doc for Batch.stack * reuse _create_values and refactor stack_ & cat_ * fix pep8 * fix docs * raise exception for stacking with partial keys and axis!=0 * minor fix * minor fix Co-authored-by: Trinkle23897 <463003665@qq.com> * stash * let agent learn to play as agent 2 which is harder * code refactor * Improve collector (#125) * remove multibuf * reward_metric * make fileds with empty Batch rather than None after reset * many fixes and refactor Co-authored-by: Trinkle23897 <463003665@qq.com> * marl for tic-tac-toe and general gomoku * update default gamma to 0.1 for tic tac toe to win earlier * fix name typo; change default game config; add rew_norm option * fix pep8 * test commit * mv test dir name * add rew flag * fix torch.optim import error and madqn rew_norm * remove useless kwargs * Vector env enable select worker (#132) * Enable selecting worker for vector env step method. * Update collector to match new vecenv selective worker behavior. * Bug fix. * Fix rebase Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu> * show the last move of tictactoe by capital letters * add multi-agent tutorial * fix link * Standardized behavior of Batch.cat and misc code refactor (#137) * code refactor; remove unused kwargs; add reward_normalization for dqn * bugfix for __setitem__ with torch.Tensor; add Batch.condense * minor fix * support cat with empty Batch * remove the dependency of is_empty on len; specify the semantic of empty Batch by test cases * support stack with empty Batch * remove condense * refactor code to reflect the shared / partial / reserved categories of keys * add is_empty(recursive=False) * doc fix * docfix and bugfix for _is_batch_set * add doc for key reservation * bugfix for algebra operators * fix cat with lens hint * code refactor * bugfix for storing None * use ValueError instead of exception * hide lens away from users * add comment for __cat * move the computation of the initial value of lens in cat_ itself. * change the place of doc string * doc fix for Batch doc string * change recursive to recurse * doc string fix * minor fix for batch doc * write tutorials to specify the standard of Batch (#142) * add doc for len exceptions * doc move; unify is_scalar_value function * remove some issubclass check * bugfix for shape of Batch(a=1) * keep moving doc * keep writing batch tutorial * draft version of Batch tutorial done * improving doc * keep improving doc * batch tutorial done * rename _is_number * rename _is_scalar * shape property do not raise exception * restore some doc string * grammarly [ci skip] * grammarly + fix warning of building docs * polish docs * trim and re-arrange batch tutorial * go straight to the point * minor fix for batch doc * add shape / len in basic usage * keep improving tutorial * unify _to_array_with_correct_type to remove duplicate code * delegate type convertion to Batch.__init__ * further delegate type convertion to Batch.__init__ * bugfix for setattr * add a _parse_value function * remove dummy function call * polish docs Co-authored-by: Trinkle23897 <463003665@qq.com> * bugfix for mapolicy * pretty code * remove debug code; remove condense * doc fix * check before get_agents in tutorials/tictactoe * tutorial * fix * minor fix for batch doc * minor polish * faster test_ttt * improve tic-tac-toe environment * change default epoch and step-per-epoch for tic-tac-toe * fix mapolicy * minor polish for mapolicy * 90% to 80% (need to change the tutorial) * win rate * show step number at board * simplify mapolicy * minor polish for mapolicy * remove MADQN * fix pep8 * change legal_actions to mask (need to update docs) * simplify maenv * fix typo * move basevecenv to single file * separate RandomAgent * update docs * grammarly * fix pep8 * win rate typo * format in cheatsheet * use bool mask directly * update doc for boolean mask Co-authored-by: Trinkle23897 <463003665@qq.com> Co-authored-by: Alexis DUBURCQ <alexis.duburcq@gmail.com> Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
2020-07-21 14:59:49 +08:00
self.agent_id = agent_id
2020-03-12 22:20:33 +08:00
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
# TODO: needed, since for most of offline algorithm, the algorithm itself doesn't
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# have a method to add noise to action.
# So we add the default behavior here. It's a little messy, maybe one can
# find a better way to do this.
_TArrOrActBatch = TypeVar("_TArrOrActBatch", bound="np.ndarray | ActBatchProtocol")
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
def exploration_noise(
self,
act: _TArrOrActBatch,
batch: ObsBatchProtocol,
) -> _TArrOrActBatch:
"""Modify the action from policy.forward with exploration noise.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
NOTE: currently does not add any noise! Needs to be overridden by subclasses
to actually do something.
:param act: a data batch or numpy.ndarray which is the action taken by
policy.forward.
:param batch: the input batch for policy.forward, kept for advanced usage.
:return: action in the same form of input "act" but with added exploration
noise.
"""
return act
def soft_update(self, tgt: nn.Module, src: nn.Module, tau: float) -> None:
"""Softly update the parameters of target module towards the parameters of source module."""
for tgt_param, src_param in zip(tgt.parameters(), src.parameters(), strict=True):
tgt_param.data.copy_(tau * src_param.data + (1 - tau) * tgt_param.data)
def compute_action(
self,
obs: arr_type,
info: dict[str, Any] | None = None,
state: dict | BatchProtocol | np.ndarray | None = None,
) -> np.ndarray | int:
"""Get action as int (for discrete env's) or array (for continuous ones) from an env's observation and info.
:param obs: observation from the gym's env.
:param info: information given by the gym's env.
:param state: the hidden state of RNN policy, used for recurrent policy.
:return: action as int (for discrete env's) or array (for continuous ones).
"""
# need to add empty batch dimension
obs = obs[None, :]
obs_batch = cast(ObsBatchProtocol, Batch(obs=obs, info=info))
act = self.forward(obs_batch, state=state).act.squeeze()
if isinstance(act, torch.Tensor):
act = act.detach().cpu().numpy()
act = self.map_action(act)
if isinstance(self.action_space, Discrete):
# could be an array of shape (), easier to just convert to int
act = int(act) # type: ignore
return act
2020-03-12 22:20:33 +08:00
@abstractmethod
def forward(
self,
batch: ObsBatchProtocol,
state: dict | BatchProtocol | np.ndarray | None = None,
**kwargs: Any,
) -> ActBatchProtocol | ActStateBatchProtocol: # TODO: make consistent typing
2020-04-06 19:36:59 +08:00
"""Compute action over the given batch data.
:return: A :class:`~tianshou.data.Batch` which MUST have the following keys:
2020-04-06 19:36:59 +08:00
* ``act`` a numpy.ndarray or a torch.Tensor, the action over \
2020-04-06 19:36:59 +08:00
given batch data.
* ``state`` a dict, a numpy.ndarray or a torch.Tensor, the \
2020-04-06 19:36:59 +08:00
internal state of the policy, ``None`` as default.
Other keys are user-defined. It depends on the algorithm. For example,
::
# some code
return Batch(logits=..., act=..., state=None, dist=...)
The keyword ``policy`` is reserved and the corresponding data will be
stored into the replay buffer. For instance,
::
# some code
return Batch(..., policy=Batch(log_prob=dist.log_prob(act)))
# and in the sampled data batch, you can directly use
# batch.policy.log_prob to get your data.
.. note::
In continuous action space, you should do another step "map_action" to get
the real action:
::
act = policy(batch).act # doesn't map to the target action range
act = policy.map_action(act, batch)
2020-04-06 19:36:59 +08:00
"""
2020-03-12 22:20:33 +08:00
@staticmethod
def _action_to_numpy(act: arr_type) -> np.ndarray:
act = to_numpy(act) # NOTE: to_numpy could confusingly also return a Batch
if not isinstance(act, np.ndarray):
raise ValueError(
f"act should have been be a numpy.ndarray, but got {type(act)}.",
)
return act
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
def map_action(
self,
act: arr_type,
) -> np.ndarray:
"""Map raw network output to action range in gym's env.action_space.
This function is called in :meth:`~tianshou.data.Collector.collect` and only
affects action sending to env. Remapped action will not be stored in buffer
and thus can be viewed as a part of env (a black box action transformation).
Action mapping includes 2 standard procedures: bounding and scaling. Bounding
procedure expects original action range is (-inf, inf) and maps it to [-1, 1],
while scaling procedure expects original action range is (-1, 1) and maps it
to [action_space.low, action_space.high]. Bounding procedure is applied first.
:param act: a data batch or numpy.ndarray which is the action taken by
policy.forward.
:return: action in the same form of input "act" but remap to the target action
space.
"""
act = self._action_to_numpy(act)
if isinstance(self.action_space, gym.spaces.Box):
if self.action_bound_method == "clip":
act = np.clip(act, -1.0, 1.0)
elif self.action_bound_method == "tanh":
act = np.tanh(act)
if self.action_scaling:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
assert (
np.min(act) >= -1.0 and np.max(act) <= 1.0
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
), f"action scaling only accepts raw action range = [-1, 1], but got: {act}"
low, high = self.action_space.low, self.action_space.high
act = low + (high - low) * (act + 1.0) / 2.0
return act
def map_action_inverse(
self,
act: arr_type,
) -> np.ndarray:
"""Inverse operation to :meth:`~tianshou.policy.BasePolicy.map_action`.
This function is called in :meth:`~tianshou.data.Collector.collect` for
random initial steps. It scales [action_space.low, action_space.high] to
the value ranges of policy.forward.
:param act: a data batch, list or numpy.ndarray which is the action taken
by gym.spaces.Box.sample().
:return: action remapped.
"""
act = self._action_to_numpy(act)
if isinstance(self.action_space, gym.spaces.Box):
if self.action_scaling:
low, high = self.action_space.low, self.action_space.high
scale = high - low
eps = np.finfo(np.float32).eps.item()
scale[scale < eps] += eps
act = (act - low) * 2.0 / scale - 1.0
if self.action_bound_method == "tanh":
act = (np.log(1.0 + act) - np.log(1.0 - act)) / 2.0
return act
def process_buffer(self, buffer: TBuffer) -> TBuffer:
"""Pre-process the replay buffer, e.g., to add new keys.
Used in BaseTrainer initialization method, usually used by offline trainers.
Note: this will only be called once, when the trainer is initialized!
If the buffer is empty by then, there will be nothing to process.
This method is meant to be overridden by policies which will be trained
offline at some stage, e.g., in a pre-training step.
"""
return buffer
def process_fn(
self,
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
) -> RolloutBatchProtocol:
"""Pre-process the data from the provided replay buffer.
Meant to be overridden by subclasses. Typical usage is to add new keys to the
batch, e.g., to add the value function of the next state. Used in :meth:`update`,
which is usually called repeatedly during training.
For modifying the replay buffer only once at the beginning
(e.g., for offline learning) see :meth:`process_buffer`.
"""
return batch
2020-03-15 17:41:00 +08:00
@abstractmethod
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
def learn(self, batch: RolloutBatchProtocol, *args: Any, **kwargs: Any) -> TTrainingStats:
2020-04-06 19:36:59 +08:00
"""Update policy with a given batch of data.
2020-03-12 22:20:33 +08:00
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
:return: A dataclass object, including the data needed to be logged (e.g., loss).
.. note::
In order to distinguish the collecting state, updating state and
testing state, you can check the policy state by ``self.training``
and ``self.updating``. Please refer to :ref:`policy_state` for more
detailed explanation.
.. warning::
If you use ``torch.distributions.Normal`` and
``torch.distributions.Categorical`` to calculate the log_prob,
please be careful about the shape: Categorical distribution gives
"[batch_size]" shape while Normal distribution gives "[batch_size,
1]" shape. The auto-broadcasting of numerical operation with torch
tensors will amplify this error.
2020-04-06 19:36:59 +08:00
"""
2020-04-14 21:11:06 +08:00
def post_process_fn(
self,
batch: BatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
) -> None:
"""Post-process the data from the provided replay buffer.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
This will only have an effect if the buffer has the
method `update_weight` and the batch has the attribute `weight`.
Typical usage is to update the sampling weight in prioritized
experience replay. Used in :meth:`update`.
"""
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
if hasattr(buffer, "update_weight"):
if hasattr(batch, "weight"):
buffer.update_weight(indices, batch.weight)
else:
logger.warning(
"batch has no attribute 'weight', but buffer has an "
"update_weight method. This is probably a mistake."
"Prioritized replay is disabled for this batch.",
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
)
def update(
self,
sample_size: int | None,
buffer: ReplayBuffer | None,
**kwargs: Any,
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
) -> TTrainingStats:
"""Update the policy network and replay buffer.
It includes 3 function steps: process_fn, learn, and post_process_fn. In
addition, this function will change the value of ``self.updating``: it will be
False before this function and will be True when executing :meth:`update`.
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
Please refer to :ref:`policy_state` for more detailed explanation. The return
value of learn is augmented with the training time within update, while smoothed
loss values are computed in the trainer.
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
:param sample_size: 0 means it will extract all the data from the buffer,
otherwise it will sample a batch with given sample_size. None also
means it will extract all the data from the buffer, but it will be shuffled
first. TODO: remove the option for 0?
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
:param buffer: the corresponding replay buffer.
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
:return: A dataclass object containing the data needed to be logged (e.g., loss) from
``policy.learn()``.
"""
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
# TODO: when does this happen?
# -> this happens never in practice as update is either called with a collector buffer or an assert before
if buffer is None:
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
return TrainingStats() # type: ignore[return-value]
start_time = time.time()
batch, indices = buffer.sample(sample_size)
self.updating = True
batch = self.process_fn(batch, buffer, indices)
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
training_stat = self.learn(batch, **kwargs)
self.post_process_fn(batch, buffer, indices)
if self.lr_scheduler is not None:
self.lr_scheduler.step()
self.updating = False
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
training_stat.train_time = time.time() - start_time
return training_stat
@staticmethod
def value_mask(buffer: ReplayBuffer, indices: np.ndarray) -> np.ndarray:
"""Value mask determines whether the obs_next of buffer[indices] is valid.
For instance, usually "obs_next" after "done" flag is considered to be invalid,
and its q/advantage value can provide meaningless (even misleading)
information, and should be set to 0 by hand. But if "done" flag is generated
because timelimit of game length (info["TimeLimit.truncated"] is set to True in
gym's settings), "obs_next" will instead be valid. Value mask is typically used
for assisting in calculating the correct q/advantage value.
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
:param buffer: the corresponding replay buffer.
:param numpy.ndarray indices: indices of replay buffer whose "obs_next" will be
judged.
:return: A bool type numpy.ndarray in the same shape with indices. "True" means
"obs_next" of that buffer[indices] is valid.
"""
return ~buffer.terminated[indices]
2020-04-19 14:30:42 +08:00
@staticmethod
2020-05-12 11:31:47 +08:00
def compute_episodic_return(
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
batch: RolloutBatchProtocol,
buffer: ReplayBuffer,
indices: np.ndarray,
v_s_: np.ndarray | torch.Tensor | None = None,
v_s: np.ndarray | torch.Tensor | None = None,
gamma: float = 0.99,
gae_lambda: float = 0.95,
) -> tuple[np.ndarray, np.ndarray]:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
r"""Compute returns over given batch.
Use Implementation of Generalized Advantage Estimator (arXiv:1506.02438)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
to calculate q/advantage value of given batch. Returns are calculated as
advantage + value, which is exactly equivalent to using :math:`TD(\lambda)`
for estimating returns.
2020-04-14 21:11:06 +08:00
2024-05-01 08:59:00 +02:00
Setting `v_s_` and `v_s` to None (or all zeros) and `gae_lambda` to 1.0 calculates the
discounted return-to-go/ Monte-Carlo return.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param batch: a data batch which contains several episodes of data in
sequential order. Mind that the end of each finished episode of batch
should be marked by done flag, unfinished (or collecting) episodes will be
recognized by buffer.unfinished_index().
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param buffer: the corresponding replay buffer.
2024-05-01 08:59:00 +02:00
:param indices: tells the batch's location in buffer, batch is equal
to buffer[indices].
2024-05-01 08:59:00 +02:00
:param v_s_: the value function of all next states :math:`V(s')`.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
If None, it will be set to an array of 0.
:param v_s: the value function of all current states :math:`V(s)`. If None,
2024-05-01 08:59:00 +02:00
it is set based upon `v_s_` rolled by 1.
:param gamma: the discount factor, should be in [0, 1].
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
:param gae_lambda: the parameter for Generalized Advantage Estimation,
should be in [0, 1].
2020-06-02 22:29:50 +08:00
:return: two numpy arrays (returns, advantage) with each shape (bsz, ).
2020-04-14 21:11:06 +08:00
"""
rew = batch.rew
if v_s_ is None:
assert np.isclose(gae_lambda, 1.0)
v_s_ = np.zeros_like(rew)
else:
v_s_ = to_numpy(v_s_.flatten())
v_s_ = v_s_ * BasePolicy.value_mask(buffer, indices)
v_s = np.roll(v_s_, 1) if v_s is None else to_numpy(v_s.flatten())
end_flag = np.logical_or(batch.terminated, batch.truncated)
end_flag[np.isin(indices, buffer.unfinished_index())] = True
advantage = _gae_return(v_s, v_s_, rew, end_flag, gamma, gae_lambda)
returns = advantage + v_s
# normalization varies from each policy, so we don't do it here
return returns, advantage
2020-06-02 22:29:50 +08:00
@staticmethod
def compute_nstep_return(
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
batch: RolloutBatchProtocol,
2020-06-02 22:29:50 +08:00
buffer: ReplayBuffer,
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
indices: np.ndarray,
2020-06-03 13:59:47 +08:00
target_q_fn: Callable[[ReplayBuffer, np.ndarray], torch.Tensor],
2020-06-02 22:29:50 +08:00
gamma: float = 0.99,
2020-06-03 13:59:47 +08:00
n_step: int = 1,
rew_norm: bool = False,
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
) -> BatchWithReturnsProtocol:
r"""Compute n-step return for Q-learning targets.
2020-06-02 22:29:50 +08:00
.. math::
G_t = \sum_{i = t}^{t + n - 1} \gamma^{i - t}(1 - d_i)r_i +
\gamma^n (1 - d_{t + n}) Q_{\mathrm{target}}(s_{t + n})
where :math:`\gamma` is the discount factor, :math:`\gamma \in [0, 1]`,
:math:`d_t` is the done flag of step :math:`t`.
2020-06-02 22:29:50 +08:00
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
:param batch: a data batch, which is equal to buffer[indices].
:param buffer: the data buffer.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param indices: tell batch's location in buffer
:param function target_q_fn: a function which compute target Q value
of "obs_next" given data buffer and wanted indices.
:param gamma: the discount factor, should be in [0, 1].
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
:param n_step: the number of estimation step, should be an int greater
than 0.
:param rew_norm: normalize the reward to Normal(0, 1).
Remove kwargs in policy init (#950) Closes #947 This removes all kwargs from all policy constructors. While doing that, I also improved several names and added a whole lot of TODOs. ## Functional changes: 1. Added possibility to pass None as `critic2` and `critic2_optim`. In fact, the default behavior then should cover the absolute majority of cases 2. Added a function called `clone_optimizer` as a temporary measure to support passing `critic2_optim=None` ## Breaking changes: 1. `action_space` is no longer optional. In fact, it already was non-optional, as there was a ValueError in BasePolicy.init. So now several examples were fixed to reflect that 2. `reward_normalization` removed from DDPG and children. It was never allowed to pass it as `True` there, an error would have been raised in `compute_n_step_reward`. Now I removed it from the interface 3. renamed `critic1` and similar to `critic`, in order to have uniform interfaces. Note that the `critic` in DDPG was optional for the sole reason that child classes used `critic1`. I removed this optionality (DDPG can't do anything with `critic=None`) 4. Several renamings of fields (mostly private to public, so backwards compatible) ## Additional changes: 1. Removed type and default declaration from docstring. This kind of duplication is really not necessary 2. Policy constructors are now only called using named arguments, not a fragile mixture of positional and named as before 5. Minor beautifications in typing and code 6. Generally shortened docstrings and made them uniform across all policies (hopefully) ## Comment: With these changes, several problems in tianshou's inheritance hierarchy become more apparent. I tried highlighting them for future work. --------- Co-authored-by: Dominik Jain <d.jain@appliedai.de>
2023-10-08 17:57:03 +02:00
TODO: passing True is not supported and will cause an error!
2020-06-03 13:59:47 +08:00
:return: a Batch. The result will be stored in batch.returns as a
torch.Tensor with the same shape as target_q_fn's return tensor.
2020-06-02 22:29:50 +08:00
"""
assert not rew_norm, "Reward normalization in computing n-step returns is unsupported now."
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
if len(indices) != len(batch):
raise ValueError(f"Batch size {len(batch)} and indices size {len(indices)} mismatch.")
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
rew = buffer.rew
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
bsz = len(indices)
indices = [indices]
for _ in range(n_step - 1):
indices.append(buffer.next(indices[-1]))
indices = np.stack(indices)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# terminal indicates buffer indexes nstep after 'indices',
# and are truncated at the end of each episode
terminal = indices[-1]
with torch.no_grad():
target_q_torch = target_q_fn(buffer, terminal) # (bsz, ?)
target_q = to_numpy(target_q_torch.reshape(bsz, -1))
target_q = target_q * BasePolicy.value_mask(buffer, terminal).reshape(-1, 1)
end_flag = buffer.done.copy()
end_flag[buffer.unfinished_index()] = True
target_q = _nstep_return(rew, end_flag, target_q, indices, gamma, n_step)
batch.returns = to_torch_as(target_q, target_q_torch)
if hasattr(batch, "weight"): # prio buffer update
batch.weight = to_torch_as(batch.weight, target_q_torch)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
return cast(BatchWithReturnsProtocol, batch)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
@staticmethod
def _compile() -> None:
f64 = np.array([0, 1], dtype=np.float64)
f32 = np.array([0, 1], dtype=np.float32)
b = np.array([False, True], dtype=np.bool_)
i64 = np.array([[0, 1]], dtype=np.int64)
_gae_return(f64, f64, f64, b, 0.1, 0.1)
_gae_return(f32, f32, f64, b, 0.1, 0.1)
_nstep_return(f64, b, f32.reshape(-1, 1), i64, 0.1, 1)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# TODO: rename? See docstring
@njit
def _gae_return(
v_s: np.ndarray,
v_s_: np.ndarray,
rew: np.ndarray,
end_flag: np.ndarray,
gamma: float,
gae_lambda: float,
) -> np.ndarray:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
r"""Computes advantages with GAE.
Note: doesn't compute returns but rather advantages. The return
is given by the output of this + v_s. Note that the advantages plus v_s
is exactly the same as the TD-lambda target, which is computed by the recursive
formula:
.. math::
G_t^\lambda = r_t + \gamma ( \lambda G_{t+1}^\lambda + (1 - \lambda) V_{t+1} )
The GAE is computed recursively as:
.. math::
\delta_t = r_t + \gamma V_{t+1} - V_t \n
A_t^\lambda= \delta_t + \gamma \lambda A_{t+1}^\lambda
And the following equality holds:
.. math::
G_t^\lambda = A_t^\lambda+ V_t
:param v_s: values in an episode, i.e. $V_t$
:param v_s_: next values in an episode, i.e. v_s shifted by 1, equivalent to
$V_{t+1}$
:param rew: rewards in an episode, i.e. $r_t$
:param end_flag: boolean array indicating whether the episode is done
:param gamma: discount factor
:param gae_lambda: lambda parameter for GAE, controlling the bias-variance tradeoff
:return:
"""
returns = np.zeros(rew.shape)
delta = rew + v_s_ * gamma - v_s
discount = (1.0 - end_flag) * (gamma * gae_lambda)
gae = 0.0
for i in range(len(rew) - 1, -1, -1):
gae = delta[i] + discount[i] * gae
returns[i] = gae
return returns
@njit
def _nstep_return(
rew: np.ndarray,
end_flag: np.ndarray,
target_q: np.ndarray,
indices: np.ndarray,
gamma: float,
n_step: int,
) -> np.ndarray:
gamma_buffer = np.ones(n_step + 1)
for i in range(1, n_step + 1):
gamma_buffer[i] = gamma_buffer[i - 1] * gamma
target_shape = target_q.shape
bsz = target_shape[0]
# change target_q to 2d array
target_q = target_q.reshape(bsz, -1)
returns = np.zeros(target_q.shape)
gammas = np.full(indices[0].shape, n_step)
for n in range(n_step - 1, -1, -1):
now = indices[n]
gammas[end_flag[now] > 0] = n + 1
returns[end_flag[now] > 0] = 0.0
returns = rew[now].reshape(bsz, 1) + gamma * returns
target_q = target_q * gamma_buffer[gammas].reshape(bsz, 1) + returns
return target_q.reshape(target_shape)