Tianshou/test/base/test_buffer.py

1354 lines
42 KiB
Python
Raw Normal View History

import os
import pickle
import tempfile
from timeit import timeit
import h5py
import numpy as np
import pytest
import torch
from tianshou.data import (
Batch,
CachedReplayBuffer,
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
HERReplayBuffer,
HERVectorReplayBuffer,
PrioritizedReplayBuffer,
PrioritizedVectorReplayBuffer,
ReplayBuffer,
SegmentTree,
VectorReplayBuffer,
)
from tianshou.data.utils.converter import to_hdf5
2020-03-11 18:02:19 +08:00
if __name__ == '__main__':
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
from env import MyGoalEnv, MyTestEnv
2020-03-12 22:20:33 +08:00
else: # pytest
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
from test.base.env import MyGoalEnv, MyTestEnv
2020-03-11 17:28:51 +08:00
2020-03-11 18:02:19 +08:00
def test_replaybuffer(size=10, bufsize=20):
env = MyTestEnv(size)
2020-03-11 17:28:51 +08:00
buf = ReplayBuffer(bufsize)
buf.update(buf)
assert str(buf) == buf.__class__.__name__ + '()'
2020-03-11 17:28:51 +08:00
obs = env.reset()
2020-03-16 11:11:29 +08:00
action_list = [1] * 5 + [0] * 10 + [1] * 10
for i, act in enumerate(action_list):
obs_next, rew, terminated, truncated, info = env.step(act)
buf.add(
Batch(
obs=obs,
act=[act],
rew=rew,
terminated=terminated,
truncated=truncated,
obs_next=obs_next,
info=info
)
)
2020-03-16 11:11:29 +08:00
obs = obs_next
2020-06-08 21:53:00 +08:00
assert len(buf) == min(bufsize, i + 1)
assert buf.act.dtype == int
assert buf.act.shape == (bufsize, 1)
data, indices = buf.sample(bufsize * 2)
assert (indices < len(buf)).all()
2020-03-11 18:02:19 +08:00
assert (data.obs < size).all()
assert (0 <= data.done).all() and (data.done <= 1).all()
assert (0 <= data.terminated).all() and (data.terminated <= 1).all()
assert (0 <= data.truncated).all() and (data.truncated <= 1).all()
b = ReplayBuffer(size=10)
# neg bsz should return empty index
assert b.sample_indices(-1).tolist() == []
ptr, ep_rew, ep_len, ep_idx = b.add(
Batch(
obs=1,
act=1,
rew=1,
terminated=1,
truncated=0,
obs_next='str',
info={
'a': 3,
'b': {
'c': 5.0
}
}
)
)
assert b.obs[0] == 1
assert b.done[0]
assert b.terminated[0]
assert not b.truncated[0]
assert b.obs_next[0] == 'str'
assert np.all(b.obs[1:] == 0)
assert np.all(b.obs_next[1:] == np.array(None))
assert b.info.a[0] == 3 and b.info.a.dtype == int
assert np.all(b.info.a[1:] == 0)
assert b.info.b.c[0] == 5.0 and b.info.b.c.dtype == float
assert np.all(b.info.b.c[1:] == 0.0)
assert ptr.shape == (1, ) and ptr[0] == 0
assert ep_rew.shape == (1, ) and ep_rew[0] == 1
assert ep_len.shape == (1, ) and ep_len[0] == 1
assert ep_idx.shape == (1, ) and ep_idx[0] == 0
# test extra keys pop up, the buffer should handle it dynamically
batch = Batch(
obs=2,
act=2,
rew=2,
terminated=0,
truncated=0,
obs_next="str2",
info={
"a": 4,
"d": {
"e": -np.inf
}
}
)
b.add(batch)
info_keys = ["a", "b", "d"]
assert set(b.info.keys()) == set(info_keys)
assert b.info.a[1] == 4 and b.info.b.c[1] == 0
assert b.info.d.e[1] == -np.inf
# test batch-style adding method, where len(batch) == 1
batch.done = [1]
batch.terminated = [0]
batch.truncated = [1]
batch.info.e = np.zeros([1, 4])
batch = Batch.stack([batch])
ptr, ep_rew, ep_len, ep_idx = b.add(batch, buffer_ids=[0])
assert ptr.shape == (1, ) and ptr[0] == 2
assert ep_rew.shape == (1, ) and ep_rew[0] == 4
assert ep_len.shape == (1, ) and ep_len[0] == 2
assert ep_idx.shape == (1, ) and ep_idx[0] == 1
assert set(b.info.keys()) == set(info_keys + ["e"])
assert b.info.e.shape == (b.maxsize, 1, 4)
with pytest.raises(IndexError):
b[22]
# test prev / next
assert np.all(b.prev(np.array([0, 1, 2])) == [0, 1, 1])
assert np.all(b.next(np.array([0, 1, 2])) == [0, 2, 2])
batch.done = [0]
b.add(batch, buffer_ids=[0])
assert np.all(b.prev(np.array([0, 1, 2, 3])) == [0, 1, 1, 3])
assert np.all(b.next(np.array([0, 1, 2, 3])) == [0, 2, 2, 3])
2020-03-11 17:28:51 +08:00
def test_ignore_obs_next(size=10):
# Issue 82
buf = ReplayBuffer(size, ignore_obs_next=True)
for i in range(size):
buf.add(
Batch(
obs={
'mask1': np.array([i, 1, 1, 0, 0]),
'mask2': np.array([i + 4, 0, 1, 0, 0]),
'mask': i
},
act={
'act_id': i,
'position_id': i + 3
},
rew=i,
terminated=i % 3 == 0,
truncated=False,
info={'if': i}
)
)
indices = np.arange(len(buf))
orig = np.arange(len(buf))
data = buf[indices]
data2 = buf[indices]
assert isinstance(data, Batch)
assert isinstance(data2, Batch)
assert np.allclose(indices, orig)
assert np.allclose(data.obs_next.mask, data2.obs_next.mask)
assert np.allclose(data.obs_next.mask, [0, 2, 3, 3, 5, 6, 6, 8, 9, 9])
buf.stack_num = 4
data = buf[indices]
data2 = buf[indices]
assert np.allclose(data.obs_next.mask, data2.obs_next.mask)
assert np.allclose(
data.obs_next.mask,
np.array(
[
[0, 0, 0, 0], [1, 1, 1, 2], [1, 1, 2, 3], [1, 1, 2, 3], [4, 4, 4, 5],
[4, 4, 5, 6], [4, 4, 5, 6], [7, 7, 7, 8], [7, 7, 8, 9], [7, 7, 8, 9]
]
)
)
assert np.allclose(data.info['if'], data2.info['if'])
assert np.allclose(
data.info['if'],
np.array(
[
[0, 0, 0, 0], [1, 1, 1, 1], [1, 1, 1, 2], [1, 1, 2, 3], [4, 4, 4, 4],
[4, 4, 4, 5], [4, 4, 5, 6], [7, 7, 7, 7], [7, 7, 7, 8], [7, 7, 8, 9]
]
)
)
assert data.obs_next
def test_stack(size=5, bufsize=9, stack_num=4, cached_num=3):
env = MyTestEnv(size)
buf = ReplayBuffer(bufsize, stack_num=stack_num)
buf2 = ReplayBuffer(bufsize, stack_num=stack_num, sample_avail=True)
buf3 = ReplayBuffer(bufsize, stack_num=stack_num, save_only_last_obs=True)
obs, info = env.reset(options={"state": 1})
for _ in range(16):
obs_next, rew, terminated, truncated, info = env.step(1)
done = terminated or truncated
buf.add(
Batch(
obs=obs,
act=1,
rew=rew,
terminated=terminated,
truncated=truncated,
info=info
)
)
buf2.add(
Batch(
obs=obs,
act=1,
rew=rew,
terminated=terminated,
truncated=truncated,
info=info
)
)
buf3.add(
Batch(
obs=[obs, obs, obs],
act=1,
rew=rew,
terminated=terminated,
truncated=truncated,
obs_next=[obs, obs],
info=info
)
)
obs = obs_next
if done:
obs, info = env.reset(options={"state": 1})
indices = np.arange(len(buf))
assert np.allclose(
buf.get(indices, 'obs')[..., 0], [
[1, 1, 1, 2], [1, 1, 2, 3], [1, 2, 3, 4], [1, 1, 1, 1], [1, 1, 1, 2],
[1, 1, 2, 3], [1, 2, 3, 4], [4, 4, 4, 4], [1, 1, 1, 1]
]
)
assert np.allclose(buf.get(indices, 'obs'), buf3.get(indices, 'obs'))
assert np.allclose(buf.get(indices, 'obs'), buf3.get(indices, 'obs_next'))
_, indices = buf2.sample(0)
assert indices.tolist() == [2, 6]
_, indices = buf2.sample(1)
assert indices[0] in [2, 6]
batch, indices = buf2.sample(-1) # neg bsz -> no data
assert indices.tolist() == [] and len(batch) == 0
with pytest.raises(IndexError):
buf[bufsize * 2]
2020-04-26 15:11:20 +08:00
def test_priortized_replaybuffer(size=32, bufsize=15):
env = MyTestEnv(size)
buf = PrioritizedReplayBuffer(bufsize, 0.5, 0.5)
buf2 = PrioritizedVectorReplayBuffer(bufsize, buffer_num=3, alpha=0.5, beta=0.5)
obs, info = env.reset()
2020-04-26 15:11:20 +08:00
action_list = [1] * 5 + [0] * 10 + [1] * 10
for i, act in enumerate(action_list):
obs_next, rew, terminated, truncated, info = env.step(act)
batch = Batch(
obs=obs,
act=act,
rew=rew,
terminated=terminated,
truncated=truncated,
obs_next=obs_next,
info=info,
policy=np.random.randn() - 0.5
)
batch_stack = Batch.stack([batch, batch, batch])
buf.add(Batch.stack([batch]), buffer_ids=[0])
buf2.add(batch_stack, buffer_ids=[0, 1, 2])
2020-04-26 15:11:20 +08:00
obs = obs_next
data, indices = buf.sample(len(buf) // 2)
2020-04-26 15:11:20 +08:00
if len(buf) // 2 == 0:
assert len(data) == len(buf)
else:
assert len(data) == len(buf) // 2
2020-06-08 21:53:00 +08:00
assert len(buf) == min(bufsize, i + 1)
assert len(buf2) == min(bufsize, 3 * (i + 1))
# check single buffer's data
assert buf.info.key.shape == (buf.maxsize, )
assert buf.rew.dtype == float
assert buf.done.dtype == bool
assert buf.terminated.dtype == bool
assert buf.truncated.dtype == bool
data, indices = buf.sample(len(buf) // 2)
buf.update_weight(indices, -data.weight / 2)
assert np.allclose(buf.weight[indices], np.abs(-data.weight / 2)**buf._alpha)
# check multi buffer's data
assert np.allclose(buf2[np.arange(buf2.maxsize)].weight, 1)
batch, indices = buf2.sample(10)
buf2.update_weight(indices, batch.weight * 0)
weight = buf2[np.arange(buf2.maxsize)].weight
mask = np.isin(np.arange(buf2.maxsize), indices)
assert np.all(weight[mask] == weight[mask][0])
assert np.all(weight[~mask] == weight[~mask][0])
assert weight[~mask][0] < weight[mask][0] and weight[mask][0] <= 1
2020-04-26 15:11:20 +08:00
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
def test_herreplaybuffer(size=10, bufsize=100, sample_sz=4):
env_size = size
env = MyGoalEnv(env_size, array_state=True)
def compute_reward_fn(ag, g):
return env.compute_reward_fn(ag, g, {})
buf = HERReplayBuffer(
bufsize, compute_reward_fn=compute_reward_fn, horizon=30, future_k=8
)
buf2 = HERVectorReplayBuffer(
bufsize,
buffer_num=3,
compute_reward_fn=compute_reward_fn,
horizon=30,
future_k=8
)
# Apply her on every episodes sampled (Hacky but necessary for deterministic test)
buf.future_p = 1
for buf2_buf in buf2.buffers:
buf2_buf.future_p = 1
obs, _ = env.reset()
action_list = [1] * 5 + [0] * 10 + [1] * 10
for i, act in enumerate(action_list):
obs_next, rew, terminated, truncated, info = env.step(act)
batch = Batch(
obs=obs,
act=[act],
rew=rew,
terminated=terminated,
truncated=truncated,
obs_next=obs_next,
info=info
)
buf.add(batch)
buf2.add(Batch.stack([batch, batch, batch]), buffer_ids=[0, 1, 2])
obs = obs_next
assert len(buf) == min(bufsize, i + 1)
assert len(buf2) == min(bufsize, 3 * (i + 1))
batch, indices = buf.sample(sample_sz)
# Check that goals are the same for the episode (only 1 ep in buffer)
tmp_indices = indices.copy()
for _ in range(2 * env_size):
obs = buf[tmp_indices].obs
obs_next = buf[tmp_indices].obs_next
rew = buf[tmp_indices].rew
g = obs.desired_goal.reshape(sample_sz, -1)[:, 0]
ag_next = obs_next.achieved_goal.reshape(sample_sz, -1)[:, 0]
g_next = obs_next.desired_goal.reshape(sample_sz, -1)[:, 0]
assert np.all(g == g[0])
assert np.all(g_next == g_next[0])
assert np.all(rew == (ag_next == g).astype(np.float32))
tmp_indices = buf.next(tmp_indices)
# Check that goals are correctly restored
buf._restore_cache()
tmp_indices = indices.copy()
for _ in range(2 * env_size):
obs = buf[tmp_indices].obs
obs_next = buf[tmp_indices].obs_next
g = obs.desired_goal.reshape(sample_sz, -1)[:, 0]
g_next = obs_next.desired_goal.reshape(sample_sz, -1)[:, 0]
assert np.all(g == env_size)
assert np.all(g_next == g_next[0])
assert np.all(g == g[0])
tmp_indices = buf.next(tmp_indices)
# Test vector buffer
batch, indices = buf2.sample(sample_sz)
# Check that goals are the same for the episode (only 1 ep in buffer)
tmp_indices = indices.copy()
for _ in range(2 * env_size):
obs = buf2[tmp_indices].obs
obs_next = buf2[tmp_indices].obs_next
rew = buf2[tmp_indices].rew
g = obs.desired_goal.reshape(sample_sz, -1)[:, 0]
ag_next = obs_next.achieved_goal.reshape(sample_sz, -1)[:, 0]
g_next = obs_next.desired_goal.reshape(sample_sz, -1)[:, 0]
assert np.all(g == g_next)
assert np.all(rew == (ag_next == g).astype(np.float32))
tmp_indices = buf2.next(tmp_indices)
# Check that goals are correctly restored
buf2._restore_cache()
tmp_indices = indices.copy()
for _ in range(2 * env_size):
obs = buf2[tmp_indices].obs
obs_next = buf2[tmp_indices].obs_next
g = obs.desired_goal.reshape(sample_sz, -1)[:, 0]
g_next = obs_next.desired_goal.reshape(sample_sz, -1)[:, 0]
assert np.all(g == env_size)
assert np.all(g_next == g_next[0])
assert np.all(g == g[0])
tmp_indices = buf2.next(tmp_indices)
# Test handling cycled indices
env_size = size
bufsize = 15
env = MyGoalEnv(env_size, array_state=False)
def compute_reward_fn(ag, g):
return env.compute_reward_fn(ag, g, {})
buf = HERReplayBuffer(
bufsize, compute_reward_fn=compute_reward_fn, horizon=30, future_k=8
)
buf._index = 5 # shifted start index
buf.future_p = 1
action_list = [1] * 10
for ep_len in [5, 10]:
obs, _ = env.reset()
for i in range(ep_len):
act = 1
obs_next, rew, terminated, truncated, info = env.step(act)
batch = Batch(
obs=obs,
act=[act],
rew=rew,
terminated=(i == ep_len - 1),
truncated=(i == ep_len - 1),
obs_next=obs_next,
info=info
)
buf.add(batch)
obs = obs_next
batch, indices = buf.sample(0)
assert np.all(buf[:5].obs.desired_goal == buf[0].obs.desired_goal)
assert np.all(buf[5:10].obs.desired_goal == buf[5].obs.desired_goal)
assert np.all(buf[10:].obs.desired_goal == buf[0].obs.desired_goal) # (same ep)
assert np.all(buf[0].obs.desired_goal != buf[5].obs.desired_goal) # (diff ep)
2023-03-04 08:57:04 +08:00
# Another test case for cycled indices
env_size = 99
bufsize = 15
env = MyGoalEnv(env_size, array_state=False)
buf = HERReplayBuffer(
bufsize, compute_reward_fn=compute_reward_fn, horizon=30, future_k=8
)
buf.future_p = 1
for x, ep_len in enumerate([10, 20]):
obs, _ = env.reset()
for i in range(ep_len):
act = 1
obs_next, rew, terminated, truncated, info = env.step(act)
batch = Batch(
obs=obs,
act=[act],
rew=rew,
terminated=(i == ep_len - 1),
truncated=(i == ep_len - 1),
obs_next=obs_next,
info=info
)
if x == 1 and obs["observation"] < 10:
obs = obs_next
continue
buf.add(batch)
obs = obs_next
buf._restore_cache()
sample_indices = np.array([10]) # Suppose the sampled indices is [10]
buf.rewrite_transitions(sample_indices)
assert int(buf.obs.desired_goal[10][0]) in [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
def test_update():
buf1 = ReplayBuffer(4, stack_num=2)
buf2 = ReplayBuffer(4, stack_num=2)
for i in range(5):
buf1.add(
Batch(
obs=np.array([i]),
act=float(i),
rew=i * i,
terminated=i % 2 == 0,
truncated=False,
info={'incident': 'found'}
)
)
assert len(buf1) > len(buf2)
buf2.update(buf1)
assert len(buf1) == len(buf2)
assert (buf2[0].obs == buf1[1].obs).all()
assert (buf2[-1].obs == buf1[0].obs).all()
b = CachedReplayBuffer(ReplayBuffer(10), 4, 5)
with pytest.raises(NotImplementedError):
b.update(b)
def test_segtree():
realop = np.sum
# small test
actual_len = 8
tree = SegmentTree(actual_len) # 1-15. 8-15 are leaf nodes
assert len(tree) == actual_len
assert np.all([tree[i] == 0. for i in range(actual_len)])
with pytest.raises(IndexError):
tree[actual_len]
naive = np.zeros([actual_len])
for _ in range(1000):
# random choose a place to perform single update
index = np.random.randint(actual_len)
value = np.random.rand()
naive[index] = value
tree[index] = value
for i in range(actual_len):
for j in range(i + 1, actual_len):
ref = realop(naive[i:j])
out = tree.reduce(i, j)
assert np.allclose(ref, out), (ref, out)
assert np.allclose(tree.reduce(start=1), realop(naive[1:]))
assert np.allclose(tree.reduce(end=-1), realop(naive[:-1]))
# batch setitem
for _ in range(1000):
index = np.random.choice(actual_len, size=4)
value = np.random.rand(4)
naive[index] = value
tree[index] = value
assert np.allclose(realop(naive), tree.reduce())
for _ in range(10):
left = np.random.randint(actual_len)
right = np.random.randint(left + 1, actual_len + 1)
assert np.allclose(realop(naive[left:right]), tree.reduce(left, right))
# large test
actual_len = 16384
tree = SegmentTree(actual_len)
naive = np.zeros([actual_len])
for _ in range(1000):
index = np.random.choice(actual_len, size=64)
value = np.random.rand(64)
naive[index] = value
tree[index] = value
assert np.allclose(realop(naive), tree.reduce())
for _ in range(10):
left = np.random.randint(actual_len)
right = np.random.randint(left + 1, actual_len + 1)
assert np.allclose(realop(naive[left:right]), tree.reduce(left, right))
# test prefix-sum-idx
actual_len = 8
tree = SegmentTree(actual_len)
naive = np.random.rand(actual_len)
tree[np.arange(actual_len)] = naive
for _ in range(1000):
scalar = np.random.rand() * naive.sum()
index = tree.get_prefix_sum_idx(scalar)
assert naive[:index].sum() <= scalar <= naive[:index + 1].sum()
# corner case here
naive = np.ones(actual_len, int)
tree[np.arange(actual_len)] = naive
for scalar in range(actual_len):
index = tree.get_prefix_sum_idx(scalar * 1.)
assert naive[:index].sum() <= scalar <= naive[:index + 1].sum()
tree = SegmentTree(10)
tree[np.arange(3)] = np.array([0.1, 0, 0.1])
assert np.allclose(
tree.get_prefix_sum_idx(np.array([0, .1, .1 + 1e-6, .2 - 1e-6])), [0, 0, 2, 2]
)
with pytest.raises(AssertionError):
tree.get_prefix_sum_idx(.2)
# test large prefix-sum-idx
actual_len = 16384
tree = SegmentTree(actual_len)
naive = np.random.rand(actual_len)
tree[np.arange(actual_len)] = naive
for _ in range(1000):
scalar = np.random.rand() * naive.sum()
index = tree.get_prefix_sum_idx(scalar)
assert naive[:index].sum() <= scalar <= naive[:index + 1].sum()
# profile
if __name__ == '__main__':
size = 100000
bsz = 64
naive = np.random.rand(size)
tree = SegmentTree(size)
tree[np.arange(size)] = naive
def sample_npbuf():
return np.random.choice(size, bsz, p=naive / naive.sum())
def sample_tree():
scalar = np.random.rand(bsz) * tree.reduce()
return tree.get_prefix_sum_idx(scalar)
print('npbuf', timeit(sample_npbuf, setup=sample_npbuf, number=1000))
print('tree', timeit(sample_tree, setup=sample_tree, number=1000))
def test_pickle():
size = 100
vbuf = ReplayBuffer(size, stack_num=2)
pbuf = PrioritizedReplayBuffer(size, 0.6, 0.4)
rew = np.array([1, 1])
for i in range(4):
vbuf.add(
Batch(
obs=Batch(index=np.array([i])),
act=0,
rew=rew,
terminated=0,
truncated=0,
)
)
for i in range(5):
pbuf.add(
Batch(
obs=Batch(index=np.array([i])),
act=2,
rew=rew,
terminated=0,
truncated=0,
info=np.random.rand()
)
)
# save & load
_vbuf = pickle.loads(pickle.dumps(vbuf))
_pbuf = pickle.loads(pickle.dumps(pbuf))
assert len(_vbuf) == len(vbuf) and np.allclose(_vbuf.act, vbuf.act)
assert len(_pbuf) == len(pbuf) and np.allclose(_pbuf.act, pbuf.act)
# make sure the meta var is identical
assert _vbuf.stack_num == vbuf.stack_num
assert np.allclose(
_pbuf.weight[np.arange(len(_pbuf))], pbuf.weight[np.arange(len(pbuf))]
)
def test_hdf5():
size = 100
buffers = {
"array": ReplayBuffer(size, stack_num=2),
"prioritized": PrioritizedReplayBuffer(size, 0.6, 0.4),
}
buffer_types = {k: b.__class__ for k, b in buffers.items()}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
info_t = torch.tensor([1.]).to(device)
for i in range(4):
kwargs = {
'obs': Batch(index=np.array([i])),
'act': i,
'rew': np.array([1, 2]),
'terminated': i % 3 == 2,
'truncated': False,
'done': i % 3 == 2,
'info': {
"number": {
"n": i,
"t": info_t
},
'extra': None
},
}
buffers["array"].add(Batch(kwargs))
buffers["prioritized"].add(Batch(kwargs))
# save
paths = {}
for k, buf in buffers.items():
f, path = tempfile.mkstemp(suffix='.hdf5')
os.close(f)
buf.save_hdf5(path)
paths[k] = path
# load replay buffer
_buffers = {k: buffer_types[k].load_hdf5(paths[k]) for k in paths.keys()}
# compare
for k in buffers.keys():
assert len(_buffers[k]) == len(buffers[k])
assert np.allclose(_buffers[k].act, buffers[k].act)
assert _buffers[k].stack_num == buffers[k].stack_num
assert _buffers[k].maxsize == buffers[k].maxsize
assert np.all(_buffers[k]._indices == buffers[k]._indices)
for k in ["array", "prioritized"]:
assert _buffers[k]._index == buffers[k]._index
assert isinstance(buffers[k].get(0, "info"), Batch)
assert isinstance(_buffers[k].get(0, "info"), Batch)
for k in ["array"]:
assert np.all(buffers[k][:].info.number.n == _buffers[k][:].info.number.n)
assert np.all(buffers[k][:].info.extra == _buffers[k][:].info.extra)
# raise exception when value cannot be pickled
data = {"not_supported": lambda x: x * x}
grp = h5py.Group
with pytest.raises(NotImplementedError):
to_hdf5(data, grp)
# ndarray with data type not supported by HDF5 that cannot be pickled
data = {"not_supported": np.array(lambda x: x * x)}
grp = h5py.Group
with pytest.raises(RuntimeError):
to_hdf5(data, grp)
def test_replaybuffermanager():
buf = VectorReplayBuffer(20, 4)
batch = Batch(
obs=[1, 2, 3],
act=[1, 2, 3],
rew=[1, 2, 3],
terminated=[0, 0, 1],
truncated=[0, 0, 0],
)
ptr, ep_rew, ep_len, ep_idx = buf.add(batch, buffer_ids=[0, 1, 2])
assert np.all(ep_len == [0, 0, 1]) and np.all(ep_rew == [0, 0, 3])
assert np.all(ptr == [0, 5, 10]) and np.all(ep_idx == [0, 5, 10])
with pytest.raises(NotImplementedError):
# ReplayBufferManager cannot be updated
buf.update(buf)
# sample index / prev / next / unfinished_index
indices = buf.sample_indices(11000)
assert np.bincount(indices)[[0, 5, 10]].min() >= 3000 # uniform sample
batch, indices = buf.sample(0)
assert np.allclose(indices, [0, 5, 10])
indices_prev = buf.prev(indices)
assert np.allclose(indices_prev, indices), indices_prev
indices_next = buf.next(indices)
assert np.allclose(indices_next, indices), indices_next
assert np.allclose(buf.unfinished_index(), [0, 5])
buf.add(
Batch(obs=[4], act=[4], rew=[4], terminated=[1], truncated=[0]),
buffer_ids=[3]
)
assert np.allclose(buf.unfinished_index(), [0, 5])
batch, indices = buf.sample(10)
batch, indices = buf.sample(0)
assert np.allclose(indices, [0, 5, 10, 15])
indices_prev = buf.prev(indices)
assert np.allclose(indices_prev, indices), indices_prev
indices_next = buf.next(indices)
assert np.allclose(indices_next, indices), indices_next
data = np.array([0, 0, 0, 0])
buf.add(
Batch(obs=data, act=data, rew=data, terminated=data, truncated=data),
buffer_ids=[0, 1, 2, 3]
)
buf.add(
Batch(obs=data, act=data, rew=data, terminated=1 - data, truncated=data),
buffer_ids=[0, 1, 2, 3]
)
assert len(buf) == 12
buf.add(
Batch(obs=data, act=data, rew=data, terminated=data, truncated=data),
buffer_ids=[0, 1, 2, 3]
)
buf.add(
Batch(obs=data, act=data, rew=data, terminated=[0, 1, 0, 1], truncated=data),
buffer_ids=[0, 1, 2, 3]
)
assert len(buf) == 20
indices = buf.sample_indices(120000)
assert np.bincount(indices).min() >= 5000
batch, indices = buf.sample(10)
indices = buf.sample_indices(0)
assert np.allclose(indices, np.arange(len(buf)))
# check the actual data stored in buf._meta
assert np.allclose(
buf.done, [
0,
0,
1,
0,
0,
0,
0,
1,
0,
1,
1,
0,
1,
0,
0,
1,
0,
1,
0,
1,
]
)
assert np.allclose(
buf.prev(indices), [
0,
0,
1,
3,
3,
5,
5,
6,
8,
8,
10,
11,
11,
13,
13,
15,
16,
16,
18,
18,
]
)
assert np.allclose(
buf.next(indices), [
1,
2,
2,
4,
4,
6,
7,
7,
9,
9,
10,
12,
12,
14,
14,
15,
17,
17,
19,
19,
]
)
assert np.allclose(buf.unfinished_index(), [4, 14])
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(obs=[1], act=[1], rew=[1], terminated=[1], truncated=[0]),
buffer_ids=[2]
)
assert np.all(ep_len == [3]) and np.all(ep_rew == [1])
assert np.all(ptr == [10]) and np.all(ep_idx == [13])
assert np.allclose(buf.unfinished_index(), [4])
indices = list(sorted(buf.sample_indices(0)))
assert np.allclose(indices, np.arange(len(buf)))
assert np.allclose(
buf.prev(indices), [
0,
0,
1,
3,
3,
5,
5,
6,
8,
8,
14,
11,
11,
13,
13,
15,
16,
16,
18,
18,
]
)
assert np.allclose(
buf.next(indices), [
1,
2,
2,
4,
4,
6,
7,
7,
9,
9,
10,
12,
12,
14,
10,
15,
17,
17,
19,
19,
]
)
# corner case: list, int and -1
assert buf.prev(-1) == buf.prev([buf.maxsize - 1])[0]
assert buf.next(-1) == buf.next([buf.maxsize - 1])[0]
batch = buf._meta
batch.info = np.ones(buf.maxsize)
buf.set_batch(batch)
assert np.allclose(buf.buffers[-1].info, [1] * 5)
assert buf.sample_indices(-1).tolist() == []
assert np.array([ReplayBuffer(0, ignore_obs_next=True)]).dtype == object
def test_cachedbuffer():
buf = CachedReplayBuffer(ReplayBuffer(10), 4, 5)
assert buf.sample_indices(0).tolist() == []
# check the normal function/usage/storage in CachedReplayBuffer
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(obs=[1], act=[1], rew=[1], terminated=[0], truncated=[0]),
buffer_ids=[1]
)
obs = np.zeros(buf.maxsize)
obs[15] = 1
indices = buf.sample_indices(0)
assert np.allclose(indices, [15])
assert np.allclose(buf.prev(indices), [15])
assert np.allclose(buf.next(indices), [15])
assert np.allclose(buf.obs, obs)
assert np.all(ep_len == [0]) and np.all(ep_rew == [0.0])
assert np.all(ptr == [15]) and np.all(ep_idx == [15])
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(obs=[2], act=[2], rew=[2], terminated=[1], truncated=[0]),
buffer_ids=[3]
)
obs[[0, 25]] = 2
indices = buf.sample_indices(0)
assert np.allclose(indices, [0, 15])
assert np.allclose(buf.prev(indices), [0, 15])
assert np.allclose(buf.next(indices), [0, 15])
assert np.allclose(buf.obs, obs)
assert np.all(ep_len == [1]) and np.all(ep_rew == [2.0])
assert np.all(ptr == [0]) and np.all(ep_idx == [0])
assert np.allclose(buf.unfinished_index(), [15])
assert np.allclose(buf.sample_indices(0), [0, 15])
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(obs=[3, 4], act=[3, 4], rew=[3, 4], terminated=[0, 1], truncated=[0, 0]),
buffer_ids=[3, 1] # TODO
)
assert np.all(ep_len == [0, 2]) and np.all(ep_rew == [0, 5.0])
assert np.all(ptr == [25, 2]) and np.all(ep_idx == [25, 1])
obs[[0, 1, 2, 15, 16, 25]] = [2, 1, 4, 1, 4, 3]
assert np.allclose(buf.obs, obs)
assert np.allclose(buf.unfinished_index(), [25])
indices = buf.sample_indices(0)
assert np.allclose(indices, [0, 1, 2, 25])
assert np.allclose(buf.done[indices], [1, 0, 1, 0])
assert np.allclose(buf.prev(indices), [0, 1, 1, 25])
assert np.allclose(buf.next(indices), [0, 2, 2, 25])
indices = buf.sample_indices(10000)
assert np.bincount(indices)[[0, 1, 2, 25]].min() > 2000 # uniform sample
# cached buffer with main_buffer size == 0 (no update)
# used in test_collector
buf = CachedReplayBuffer(ReplayBuffer(0, sample_avail=True), 4, 5)
data = np.zeros(4)
rew = np.ones([4, 4])
buf.add(
Batch(
obs=data,
act=data,
rew=rew,
terminated=[0, 0, 1, 1],
truncated=[0, 0, 0, 0]
)
)
buf.add(
Batch(
obs=data,
act=data,
rew=rew,
terminated=[0, 0, 0, 0],
truncated=[0, 0, 0, 0]
)
)
buf.add(
Batch(
obs=data,
act=data,
rew=rew,
terminated=[1, 1, 1, 1],
truncated=[0, 0, 0, 0]
)
)
buf.add(
Batch(
obs=data,
act=data,
rew=rew,
terminated=[0, 0, 0, 0],
truncated=[0, 0, 0, 0]
)
)
ptr, ep_rew, ep_len, ep_idx = buf.add(
Batch(
obs=data,
act=data,
rew=rew,
terminated=[0, 1, 0, 1],
truncated=[0, 0, 0, 0]
)
)
assert np.all(ptr == [1, -1, 11, -1]) and np.all(ep_idx == [0, -1, 10, -1])
assert np.all(ep_len == [0, 2, 0, 2])
assert np.all(ep_rew == [data, data + 2, data, data + 2])
assert np.allclose(
buf.done, [
0,
0,
1,
0,
0,
0,
1,
1,
0,
0,
0,
0,
0,
0,
0,
0,
1,
0,
0,
0,
]
)
indices = buf.sample_indices(0)
assert np.allclose(indices, [0, 1, 10, 11])
assert np.allclose(buf.prev(indices), [0, 0, 10, 10])
assert np.allclose(buf.next(indices), [1, 1, 11, 11])
def test_multibuf_stack():
size = 5
bufsize = 9
stack_num = 4
cached_num = 3
env = MyTestEnv(size)
# test if CachedReplayBuffer can handle stack_num + ignore_obs_next
buf4 = CachedReplayBuffer(
ReplayBuffer(bufsize, stack_num=stack_num, ignore_obs_next=True), cached_num,
size
)
# test if CachedReplayBuffer can handle corner case:
# buffer + stack_num + ignore_obs_next + sample_avail
buf5 = CachedReplayBuffer(
ReplayBuffer(
bufsize, stack_num=stack_num, ignore_obs_next=True, sample_avail=True
), cached_num, size
)
obs, info = env.reset(options={"state": 1})
for i in range(18):
obs_next, rew, terminated, truncated, info = env.step(1)
done = terminated or truncated
obs_list = np.array([obs + size * i for i in range(cached_num)])
act_list = [1] * cached_num
rew_list = [rew] * cached_num
terminated_list = [terminated] * cached_num
truncated_list = [truncated] * cached_num
obs_next_list = -obs_list
info_list = [info] * cached_num
batch = Batch(
obs=obs_list,
act=act_list,
rew=rew_list,
terminated=terminated_list,
truncated=truncated_list,
obs_next=obs_next_list,
info=info_list
)
buf5.add(batch)
buf4.add(batch)
assert np.all(buf4.obs == buf5.obs)
assert np.all(buf4.done == buf5.done)
assert np.all(buf4.terminated == buf5.terminated)
assert np.all(buf4.truncated == buf5.truncated)
obs = obs_next
if done:
obs, info = env.reset(options={"state": 1})
# check the `add` order is correct
assert np.allclose(
buf4.obs.reshape(-1),
[
12,
13,
14,
4,
6,
7,
8,
9,
11, # main_buffer
1,
2,
3,
4,
0, # cached_buffer[0]
6,
7,
8,
9,
0, # cached_buffer[1]
11,
12,
13,
14,
0, # cached_buffer[2]
]
), buf4.obs
assert np.allclose(
buf4.done,
[
0,
0,
1,
1,
0,
0,
0,
1,
0, # main_buffer
0,
0,
0,
1,
0, # cached_buffer[0]
0,
0,
0,
1,
0, # cached_buffer[1]
0,
0,
0,
1,
0, # cached_buffer[2]
]
), buf4.done
assert np.allclose(buf4.unfinished_index(), [10, 15, 20])
indices = sorted(buf4.sample_indices(0))
assert np.allclose(indices, list(range(bufsize)) + [9, 10, 14, 15, 19, 20])
assert np.allclose(
buf4[indices].obs[..., 0], [
[11, 11, 11, 12],
[11, 11, 12, 13],
[11, 12, 13, 14],
[4, 4, 4, 4],
[6, 6, 6, 6],
[6, 6, 6, 7],
[6, 6, 7, 8],
[6, 7, 8, 9],
[11, 11, 11, 11],
[1, 1, 1, 1],
[1, 1, 1, 2],
[6, 6, 6, 6],
[6, 6, 6, 7],
[11, 11, 11, 11],
[11, 11, 11, 12],
]
)
assert np.allclose(
buf4[indices].obs_next[..., 0], [
[11, 11, 12, 13],
[11, 12, 13, 14],
[11, 12, 13, 14],
[4, 4, 4, 4],
[6, 6, 6, 7],
[6, 6, 7, 8],
[6, 7, 8, 9],
[6, 7, 8, 9],
[11, 11, 11, 12],
[1, 1, 1, 2],
[1, 1, 1, 2],
[6, 6, 6, 7],
[6, 6, 6, 7],
[11, 11, 11, 12],
[11, 11, 11, 12],
]
)
indices = buf5.sample_indices(0)
assert np.allclose(sorted(indices), [2, 7])
assert np.all(np.isin(buf5.sample_indices(100), indices))
# manually change the stack num
buf5.stack_num = 2
for buf in buf5.buffers:
buf.stack_num = 2
indices = buf5.sample_indices(0)
assert np.allclose(sorted(indices), [0, 1, 2, 5, 6, 7, 10, 15, 20])
batch, _ = buf5.sample(0)
# test Atari with CachedReplayBuffer, save_only_last_obs + ignore_obs_next
buf6 = CachedReplayBuffer(
ReplayBuffer(
bufsize,
stack_num=stack_num,
save_only_last_obs=True,
ignore_obs_next=True
), cached_num, size
)
obs = np.random.rand(size, 4, 84, 84)
buf6.add(
Batch(
obs=[obs[2], obs[0]],
act=[1, 1],
rew=[0, 0],
terminated=[0, 1],
truncated=[0, 0],
obs_next=[obs[3], obs[1]]
),
buffer_ids=[1, 2]
)
assert buf6.obs.shape == (buf6.maxsize, 84, 84)
assert np.allclose(buf6.obs[0], obs[0, -1])
assert np.allclose(buf6.obs[14], obs[2, -1])
assert np.allclose(buf6.obs[19], obs[0, -1])
assert buf6[0].obs.shape == (4, 84, 84)
def test_multibuf_hdf5():
size = 100
buffers = {
"vector": VectorReplayBuffer(size * 4, 4),
"cached": CachedReplayBuffer(ReplayBuffer(size), 4, size)
}
buffer_types = {k: b.__class__ for k, b in buffers.items()}
device = 'cuda' if torch.cuda.is_available() else 'cpu'
info_t = torch.tensor([1.]).to(device)
for i in range(4):
kwargs = {
'obs': Batch(index=np.array([i])),
'act': i,
'rew': np.array([1, 2]),
'terminated': i % 3 == 2,
'truncated': False,
'done': i % 3 == 2,
'info': {
"number": {
"n": i,
"t": info_t
},
'extra': None
},
}
buffers["vector"].add(
Batch.stack([kwargs, kwargs, kwargs]), buffer_ids=[0, 1, 2]
)
buffers["cached"].add(
Batch.stack([kwargs, kwargs, kwargs]), buffer_ids=[0, 1, 2]
)
# save
paths = {}
for k, buf in buffers.items():
f, path = tempfile.mkstemp(suffix='.hdf5')
os.close(f)
buf.save_hdf5(path)
paths[k] = path
# load replay buffer
_buffers = {k: buffer_types[k].load_hdf5(paths[k]) for k in paths.keys()}
# compare
for k in buffers.keys():
assert len(_buffers[k]) == len(buffers[k])
assert np.allclose(_buffers[k].act, buffers[k].act)
assert _buffers[k].stack_num == buffers[k].stack_num
assert _buffers[k].maxsize == buffers[k].maxsize
assert np.all(_buffers[k]._indices == buffers[k]._indices)
# check shallow copy in VectorReplayBuffer
for k in ["vector", "cached"]:
buffers[k].info.number.n[0] = -100
assert buffers[k].buffers[0].info.number.n[0] == -100
# check if still behave normally
for k in ["vector", "cached"]:
kwargs = {
'obs': Batch(index=np.array([5])),
'act': 5,
'rew': np.array([2, 1]),
'terminated': False,
'truncated': False,
'done': False,
'info': {
"number": {
"n": i
},
'Timelimit.truncate': True
},
}
buffers[k].add(Batch.stack([kwargs, kwargs, kwargs, kwargs]))
act = np.zeros(buffers[k].maxsize)
if k == "vector":
act[np.arange(5)] = np.array([0, 1, 2, 3, 5])
act[np.arange(5) + size] = np.array([0, 1, 2, 3, 5])
act[np.arange(5) + size * 2] = np.array([0, 1, 2, 3, 5])
act[size * 3] = 5
elif k == "cached":
act[np.arange(9)] = np.array([0, 1, 2, 0, 1, 2, 0, 1, 2])
act[np.arange(3) + size] = np.array([3, 5, 2])
act[np.arange(3) + size * 2] = np.array([3, 5, 2])
act[np.arange(3) + size * 3] = np.array([3, 5, 2])
act[size * 4] = 5
assert np.allclose(buffers[k].act, act)
info_keys = ["number", "extra", "Timelimit.truncate"]
assert set(buffers[k].info.keys()) == set(info_keys)
for path in paths.values():
os.remove(path)
def test_from_data():
obs_data = np.ndarray((10, 3, 3), dtype="uint8")
for i in range(10):
obs_data[i] = i * np.ones((3, 3), dtype="uint8")
obs_next_data = np.zeros_like(obs_data)
obs_next_data[:-1] = obs_data[1:]
f, path = tempfile.mkstemp(suffix='.hdf5')
os.close(f)
with h5py.File(path, "w") as f:
obs = f.create_dataset("obs", data=obs_data)
act = f.create_dataset("act", data=np.arange(10, dtype="int32"))
rew = f.create_dataset("rew", data=np.arange(10, dtype="float32"))
terminated = f.create_dataset("terminated", data=np.zeros(10, dtype="bool"))
truncated = f.create_dataset("truncated", data=np.zeros(10, dtype="bool"))
done = f.create_dataset("done", data=np.zeros(10, dtype="bool"))
obs_next = f.create_dataset("obs_next", data=obs_next_data)
buf = ReplayBuffer.from_data(
obs, act, rew, terminated, truncated, done, obs_next
)
assert len(buf) == 10
batch = buf[3]
assert np.array_equal(batch.obs, 3 * np.ones((3, 3), dtype="uint8"))
assert batch.act == 3
assert batch.rew == 3.0
assert not batch.done
assert np.array_equal(batch.obs_next, 4 * np.ones((3, 3), dtype="uint8"))
os.remove(path)
2020-03-11 17:28:51 +08:00
if __name__ == '__main__':
2020-03-11 18:02:19 +08:00
test_replaybuffer()
test_ignore_obs_next()
test_stack()
test_segtree()
test_priortized_replaybuffer()
test_update()
test_pickle()
test_hdf5()
test_replaybuffermanager()
test_cachedbuffer()
test_multibuf_stack()
test_multibuf_hdf5()
test_from_data()
Hindsight Experience Replay as a replay buffer (#753) ## implementation I implemented HER solely as a replay buffer. It is done by temporarily directly re-writing transitions storage (`self._meta`) during the `sample_indices()` call. The original transitions are cached and will be restored at the beginning of the next sampling or when other methods is called. This will make sure that. for example, n-step return calculation can be done without altering the policy. There is also a problem with the original indices sampling. The sampled indices are not guaranteed to be from different episodes. So I decided to perform re-writing based on the episode. This guarantees that the sampled transitions from the same episode will have the same re-written goal. This also make the re-writing ratio calculation slightly differ from the paper, but it won't be too different if there are many episodes in the buffer. In the current commit, HER replay buffer only support 'future' strategy and online sampling. This is the best of HER in term of performance and memory efficiency. I also add a few more convenient replay buffers (`HERVectorReplayBuffer`, `HERReplayBufferManager`), test env (`MyGoalEnv`), gym wrapper (`TruncatedAsTerminated`), unit tests, and a simple example (examples/offline/fetch_her_ddpg.py). ## verification I have added unit tests for almost everything I have implemented. HER replay buffer was also tested using DDPG on [`FetchReach-v3` env](https://github.com/Farama-Foundation/Gymnasium-Robotics). I used default DDPG parameters from mujoco example and didn't tune anything further to get this good result! (train script: examples/offline/fetch_her_ddpg.py). ![Screen Shot 2022-10-02 at 19 22 53](https://user-images.githubusercontent.com/42699114/193454066-0dd0c65c-fd5f-4587-8912-b441d39de88a.png)
2022-10-31 08:54:54 +09:00
test_herreplaybuffer()