env and data
This commit is contained in:
parent
0c944eab68
commit
0dfb900e29
1
.gitignore
vendored
1
.gitignore
vendored
@ -107,7 +107,6 @@ celerybeat.pid
|
|||||||
# Environments
|
# Environments
|
||||||
.env
|
.env
|
||||||
.venv
|
.venv
|
||||||
env/
|
|
||||||
venv/
|
venv/
|
||||||
ENV/
|
ENV/
|
||||||
env.bak/
|
env.bak/
|
||||||
|
14
setup.py
14
setup.py
@ -36,6 +36,16 @@ setup(
|
|||||||
keywords='reinforcement learning platform',
|
keywords='reinforcement learning platform',
|
||||||
# You can just specify the packages manually here if your project is
|
# You can just specify the packages manually here if your project is
|
||||||
# simple. Or you can use find_packages().
|
# simple. Or you can use find_packages().
|
||||||
packages=find_packages(exclude=['__pycache__']),
|
packages=find_packages(exclude=['tests', 'tests.*',
|
||||||
install_requires=['numpy', 'torch', 'tensorboard', 'tqdm'],
|
'examples', 'examples.*',
|
||||||
|
'docs', 'docs.*']),
|
||||||
|
install_requires=[
|
||||||
|
'numpy',
|
||||||
|
'torch',
|
||||||
|
'tensorboard',
|
||||||
|
'tqdm',
|
||||||
|
# 'ray',
|
||||||
|
'gym',
|
||||||
|
'cloudpickle'
|
||||||
|
],
|
||||||
)
|
)
|
@ -1,4 +1,4 @@
|
|||||||
import os
|
from tianshou import data, env, utils
|
||||||
|
|
||||||
name = 'tianshou'
|
|
||||||
__version__ = '0.2.0'
|
__version__ = '0.2.0'
|
||||||
|
__all__ = ['data', 'env', 'utils']
|
||||||
|
4
tianshou/data/__init__.py
Normal file
4
tianshou/data/__init__.py
Normal file
@ -0,0 +1,4 @@
|
|||||||
|
from tianshou.data.batch import Batch
|
||||||
|
from tianshou.data.buffer import ReplayBuffer, PrioritizedReplayBuffer
|
||||||
|
|
||||||
|
__all__ = ['Batch', 'ReplayBuffer', 'PrioritizedReplayBuffer']
|
6
tianshou/data/batch.py
Normal file
6
tianshou/data/batch.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
class Batch(object):
|
||||||
|
"""Suggested keys: [obs, act, rew, done, obs_next, info]"""
|
||||||
|
|
||||||
|
def __init__(self, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.__dict__.update(kwargs)
|
65
tianshou/data/buffer.py
Normal file
65
tianshou/data/buffer.py
Normal file
@ -0,0 +1,65 @@
|
|||||||
|
import numpy as np
|
||||||
|
from tianshou.data.batch import Batch
|
||||||
|
|
||||||
|
|
||||||
|
class ReplayBuffer(object):
|
||||||
|
"""docstring for ReplayBuffer"""
|
||||||
|
def __init__(self, size):
|
||||||
|
super().__init__()
|
||||||
|
self._maxsize = size
|
||||||
|
self._index = self._size = 0
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self._size
|
||||||
|
|
||||||
|
def _add_to_buffer(self, name, inst):
|
||||||
|
if inst is None:
|
||||||
|
return
|
||||||
|
if self.__dict__.get(name, None) is None:
|
||||||
|
if isinstance(inst, np.ndarray):
|
||||||
|
self.__dict__[name] = np.zeros([self._maxsize, *inst.shape])
|
||||||
|
elif isinstance(inst, dict):
|
||||||
|
self.__dict__[name] = np.array([{} for _ in range(self._maxsize)])
|
||||||
|
else: # assume `inst` is a number
|
||||||
|
self.__dict__[name] = np.zeros([self._maxsize])
|
||||||
|
self.__dict__[name][self._index] = inst
|
||||||
|
|
||||||
|
def add(self, obs, act, rew, done, obs_next=0, info={}, weight=None):
|
||||||
|
'''
|
||||||
|
weight: importance weights, disabled here
|
||||||
|
'''
|
||||||
|
assert isinstance(info, dict), 'You should return a dict in the last argument of env.step function.'
|
||||||
|
self._add_to_buffer('obs', obs)
|
||||||
|
self._add_to_buffer('act', act)
|
||||||
|
self._add_to_buffer('rew', rew)
|
||||||
|
self._add_to_buffer('done', done)
|
||||||
|
self._add_to_buffer('obs_next', obs_next)
|
||||||
|
self._add_to_buffer('info', info)
|
||||||
|
self._size = min(self._size + 1, self._maxsize)
|
||||||
|
self._index = (self._index + 1) % self._maxsize
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
self._index = self._size = 0
|
||||||
|
|
||||||
|
def sample_indice(self, batch_size):
|
||||||
|
return np.random.choice(self._size, batch_size)
|
||||||
|
|
||||||
|
def sample(self, batch_size):
|
||||||
|
indice = self.sample_index(batch_size)
|
||||||
|
return Batch(obs=self.obs[indice], act=self.act[indice], rew=self.rew[indice],
|
||||||
|
done=self.done[indice], obs_next=self.obs_next[indice], info=self.info[indice])
|
||||||
|
|
||||||
|
|
||||||
|
class PrioritizedReplayBuffer(ReplayBuffer):
|
||||||
|
"""docstring for PrioritizedReplayBuffer"""
|
||||||
|
def __init__(self, size):
|
||||||
|
super().__init__(size)
|
||||||
|
|
||||||
|
def add(self, obs, act, rew, done, obs_next, info={}, weight=None):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def sample_indice(self, batch_size):
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def sample(self, batch_size):
|
||||||
|
raise NotImplementedError
|
3
tianshou/env/__init__.py
vendored
Normal file
3
tianshou/env/__init__.py
vendored
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
from tianshou.env.wrapper import FrameStack, VectorEnv, SubprocVectorEnv, RayVectorEnv
|
||||||
|
|
||||||
|
__all__ = ['FrameStack', 'VectorEnv', 'SubprocVectorEnv', 'RayVectorEnv']
|
208
tianshou/env/wrapper.py
vendored
Normal file
208
tianshou/env/wrapper.py
vendored
Normal file
@ -0,0 +1,208 @@
|
|||||||
|
import numpy as np
|
||||||
|
from collections import deque
|
||||||
|
from multiprocessing import Process, Pipe
|
||||||
|
|
||||||
|
from tianshou.utils import CloudpickleWrapper
|
||||||
|
|
||||||
|
|
||||||
|
class EnvWrapper(object):
|
||||||
|
def __init__(self, env):
|
||||||
|
self.env = env
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
return self.env.step(action)
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
self.env.reset()
|
||||||
|
|
||||||
|
def seed(self, seed=None):
|
||||||
|
if hasattr(self.env, 'seed'):
|
||||||
|
self.env.seed(seed)
|
||||||
|
|
||||||
|
def render(self):
|
||||||
|
if hasattr(self.env, 'render'):
|
||||||
|
self.env.render()
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
self.env.close()
|
||||||
|
|
||||||
|
|
||||||
|
class FrameStack(EnvWrapper):
|
||||||
|
def __init__(self, env, stack_num):
|
||||||
|
"""Stack last k frames."""
|
||||||
|
super().__init__(env)
|
||||||
|
self.stack_num = stack_num
|
||||||
|
self._frames = deque([], maxlen=stack_num)
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
obs, reward, done, info = self.env.step(action)
|
||||||
|
self._frames.append(obs)
|
||||||
|
return self._get_obs(), reward, done, info
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
obs = self.env.reset()
|
||||||
|
for _ in range(self.stack_num):
|
||||||
|
self._frames.append(obs)
|
||||||
|
return self._get_obs()
|
||||||
|
|
||||||
|
def _get_obs(self):
|
||||||
|
return np.concatenate(self._frames, axis=-1)
|
||||||
|
|
||||||
|
|
||||||
|
class VectorEnv(object):
|
||||||
|
"""docstring for VectorEnv"""
|
||||||
|
def __init__(self, env_fns, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.envs = [_() for _ in env_fns]
|
||||||
|
self._reset_after_done = kwargs.get('reset_after_done', False)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.envs)
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
return np.stack([e.reset() for e in self.envs])
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
result = zip(*[e.step(action[i]) for i, e in enumerate(self.envs)])
|
||||||
|
obs, rew, done, info = zip(*result)
|
||||||
|
if self._reset_after_done and sum(done):
|
||||||
|
for i, e in enumerate(self.envs):
|
||||||
|
if done[i]:
|
||||||
|
e.reset()
|
||||||
|
return np.stack(obs), np.stack(rew), np.stack(done), np.stack(info)
|
||||||
|
|
||||||
|
def seed(self, seed=None):
|
||||||
|
for e in self.envs:
|
||||||
|
if hasattr(e, 'seed'):
|
||||||
|
e.seed(seed)
|
||||||
|
|
||||||
|
def render(self):
|
||||||
|
for e in self.envs:
|
||||||
|
if hasattr(e, 'render'):
|
||||||
|
e.render()
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
for e in self.envs:
|
||||||
|
e.close()
|
||||||
|
|
||||||
|
|
||||||
|
class SubprocVectorEnv(object):
|
||||||
|
"""docstring for SubProcVectorEnv"""
|
||||||
|
def __init__(self, env_fns, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.env_num = len(env_fns)
|
||||||
|
self.closed = False
|
||||||
|
self.parent_remote, self.child_remote = zip(*[Pipe() for _ in range(self.env_num)])
|
||||||
|
self.processes = [Process(target=worker, args=(parent, child, CloudpickleWrapper(env_fn), kwargs), daemon=True)
|
||||||
|
for (parent, child, env_fn) in zip(self.parent_remote, self.child_remote, env_fns)]
|
||||||
|
for p in self.processes:
|
||||||
|
p.start()
|
||||||
|
for c in self.child_remote:
|
||||||
|
c.close()
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.env_num
|
||||||
|
|
||||||
|
def worker(parent, p, env_fn_wrapper, **kwargs):
|
||||||
|
reset_after_done = kwargs.get('reset_after_done', True)
|
||||||
|
parent.close()
|
||||||
|
env = env_fn_wrapper.data()
|
||||||
|
while True:
|
||||||
|
cmd, data = p.recv()
|
||||||
|
if cmd is 'step':
|
||||||
|
obs, rew, done, info = env.step(data)
|
||||||
|
if reset_after_done and done:
|
||||||
|
# s_ is useless when episode finishes
|
||||||
|
obs = env.reset()
|
||||||
|
p.send([obs, rew, done, info])
|
||||||
|
elif cmd is 'reset':
|
||||||
|
p.send(env.reset())
|
||||||
|
elif cmd is 'close':
|
||||||
|
p.close()
|
||||||
|
break
|
||||||
|
elif cmd is 'render':
|
||||||
|
p.send(env.render())
|
||||||
|
elif cmd is 'seed':
|
||||||
|
p.send(env.seed(data))
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
for p, a in zip(self.parent_remote, action):
|
||||||
|
p.send(['step', a])
|
||||||
|
result = [p.recv() for p in self.parent_remote]
|
||||||
|
obs, rew, done, info = zip(*result)
|
||||||
|
return np.stack(obs), np.stack(rew), np.stack(done), np.stack(info)
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
for p in self.parent_remote:
|
||||||
|
p.send(['reset', None])
|
||||||
|
return np.stack([p.recv() for p in self.parent_remote])
|
||||||
|
|
||||||
|
def seed(self, seed):
|
||||||
|
if np.isscalar(seed):
|
||||||
|
seed = [seed for _ in range(self.env_num)]
|
||||||
|
for p, s in zip(self.parent_remote, seed):
|
||||||
|
p.send(['seed', s])
|
||||||
|
for p in self.parent_remote:
|
||||||
|
p.recv()
|
||||||
|
|
||||||
|
def render(self):
|
||||||
|
for p in self.parent_remote:
|
||||||
|
p.send(['render', None])
|
||||||
|
for p in self.parent_remote:
|
||||||
|
p.recv()
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
if self.closed:
|
||||||
|
return
|
||||||
|
for p in self.parent_remote:
|
||||||
|
p.send(['close', None])
|
||||||
|
self.closed = True
|
||||||
|
for p in self.processes:
|
||||||
|
p.join()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
class RayVectorEnv(object):
|
||||||
|
"""docstring for RayVectorEnv"""
|
||||||
|
def __init__(self, env_fns, **kwargs):
|
||||||
|
super().__init__()
|
||||||
|
self.env_num = len(env_fns)
|
||||||
|
self._reset_after_done = kwargs.get('reset_after_done', False)
|
||||||
|
try:
|
||||||
|
import ray
|
||||||
|
except ImportError:
|
||||||
|
raise ImportError('Please install ray to support VectorEnv: pip3 install ray -U')
|
||||||
|
if not ray.is_initialized():
|
||||||
|
ray.init()
|
||||||
|
self.envs = [ray.remote(EnvWrapper).options(num_cpus=0).remote(e()) for e in env_fns]
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.env_num
|
||||||
|
|
||||||
|
def step(self, action):
|
||||||
|
result_obj = [e.step.remote(action[i]) for i, e in enumerate(self.envs)]
|
||||||
|
obs, rew, done, info = zip(*[ray.get(r) for r in result_obj])
|
||||||
|
return np.stack(obs), np.stack(rew), np.stack(done), np.stack(info)
|
||||||
|
|
||||||
|
def reset(self):
|
||||||
|
result_obj = [e.reset.remote() for e in self.envs]
|
||||||
|
return np.stack([ray.get(r) for r in result_obj])
|
||||||
|
|
||||||
|
def seed(self, seed):
|
||||||
|
if np.isscalar(seed):
|
||||||
|
seed = [seed for _ in range(self.env_num)]
|
||||||
|
result_obj = [e.seed.remote(s) for e, s in zip(self.envs, seed)]
|
||||||
|
for r in result_obj:
|
||||||
|
ray.get(r)
|
||||||
|
|
||||||
|
def render(self):
|
||||||
|
result_obj = [e.render.remote() for e in self.envs]
|
||||||
|
for r in result_obj:
|
||||||
|
ray.get(r)
|
||||||
|
|
||||||
|
def close(self):
|
||||||
|
result_obj = [e.close.remote() for e in self.envs]
|
||||||
|
for r in result_obj:
|
||||||
|
ray.get(r)
|
3
tianshou/utils/__init__.py
Normal file
3
tianshou/utils/__init__.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
from tianshou.utils.cloudpicklewrapper import CloudpickleWrapper
|
||||||
|
|
||||||
|
__all__ = ['CloudpickleWrapper']
|
10
tianshou/utils/cloudpicklewrapper.py
Normal file
10
tianshou/utils/cloudpicklewrapper.py
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
import cloudpickle
|
||||||
|
|
||||||
|
|
||||||
|
class CloudpickleWrapper(object):
|
||||||
|
def __init__(self, data):
|
||||||
|
self.data = data
|
||||||
|
def __getstate__(self):
|
||||||
|
return cloudpickle.dumps(self.data)
|
||||||
|
def __setstate__(self, data):
|
||||||
|
self.data = cloudpickle.loads(data)
|
Loading…
x
Reference in New Issue
Block a user