add value_function (critic). value_function and policy not finished yet.
This commit is contained in:
parent
4a2d8f0003
commit
1cc5063007
@ -15,7 +15,7 @@ __all__ = [
|
||||
'QValuePolicy',
|
||||
]
|
||||
|
||||
# TODO: separate actor and critic, we should focus on it once we finish the basic module.
|
||||
# TODO: a even more "base" class for policy
|
||||
|
||||
|
||||
class QValuePolicy(object):
|
||||
|
@ -1,5 +1,16 @@
|
||||
from tianshou.core.policy.base import QValuePolicy
|
||||
import tensorflow as tf
|
||||
import sys
|
||||
sys.path.append('..')
|
||||
import value_function.action_value as value_func
|
||||
|
||||
|
||||
class DQN_refactor(object):
|
||||
"""
|
||||
use DQN from value_function as a member
|
||||
"""
|
||||
def __init__(self, value_tensor, observation_placeholder, action_placeholder):
|
||||
self._network = value_func.DQN(value_tensor, observation_placeholder, action_placeholder)
|
||||
|
||||
|
||||
class DQN(QValuePolicy):
|
||||
|
0
tianshou/core/value_function/__init__.py
Normal file
0
tianshou/core/value_function/__init__.py
Normal file
53
tianshou/core/value_function/action_value.py
Normal file
53
tianshou/core/value_function/action_value.py
Normal file
@ -0,0 +1,53 @@
|
||||
from base import ValueFunctionBase
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class ActionValue(ValueFunctionBase):
|
||||
"""
|
||||
class of action values Q(s, a).
|
||||
"""
|
||||
def __init__(self, value_tensor, observation_placeholder, action_placeholder):
|
||||
self._action_placeholder = action_placeholder
|
||||
super(ActionValue, self).__init__(
|
||||
value_tensor=value_tensor,
|
||||
observation_placeholder=observation_placeholder
|
||||
)
|
||||
|
||||
def get_value(self, observation, action):
|
||||
"""
|
||||
|
||||
:param observation: numpy array of observations, of shape (batchsize, observation_dim).
|
||||
:param action: numpy array of actions, of shape (batchsize, action_dim)
|
||||
# TODO: Atari discrete action should have dim 1. Super Mario may should have, say, dim 5, where each can be 0/1
|
||||
:return: numpy array of state values, of shape (batchsize, )
|
||||
# TODO: dealing with the last dim of 1 in V(s) and Q(s, a)
|
||||
"""
|
||||
sess = tf.get_default_session()
|
||||
return sess.run(self.get_value_tensor(), feed_dict=
|
||||
{self._observation_placeholder: observation, self._action_placeholder:action})[:, 0]
|
||||
|
||||
|
||||
class DQN(ActionValue):
|
||||
"""
|
||||
class of the very DQN architecture. Instead of feeding s and a to the network to get a value, DQN feed s to the
|
||||
network and the last layer is Q(s, *) for all actions
|
||||
"""
|
||||
def __init__(self, value_tensor, observation_placeholder, action_placeholder):
|
||||
"""
|
||||
:param value_tensor: of shape (batchsize, num_actions)
|
||||
:param observation_placeholder: of shape (batchsize, observation_dim)
|
||||
:param action_placeholder: of shape (batchsize, )
|
||||
"""
|
||||
self._value_tensor_all_actions = value_tensor
|
||||
canonical_value_tensor = value_tensor[action_placeholder] # maybe a tf.map_fn. for now it's wrong
|
||||
|
||||
super(DQN, self).__init__(value_tensor=canonical_value_tensor,
|
||||
observation_placeholder=observation_placeholder,
|
||||
action_placeholder=action_placeholder)
|
||||
|
||||
def get_value_all_actions(self, observation):
|
||||
sess = tf.get_default_session()
|
||||
return sess.run(self._value_tensor_all_actions, feed_dict={self._observation_placeholder: observation})
|
||||
|
||||
def get_value_tensor_all_actions(self):
|
||||
return self._value_tensor_all_actions
|
23
tianshou/core/value_function/base.py
Normal file
23
tianshou/core/value_function/base.py
Normal file
@ -0,0 +1,23 @@
|
||||
|
||||
# TODO: linear feature baseline also in tf?
|
||||
class ValueFunctionBase(object):
|
||||
"""
|
||||
base class of value functions. Children include state values V(s) and action values Q(s, a)
|
||||
"""
|
||||
def __init__(self, value_tensor, observation_placeholder):
|
||||
self._observation_placeholder = observation_placeholder
|
||||
self._value_tensor = value_tensor
|
||||
|
||||
def get_value(self, **kwargs):
|
||||
"""
|
||||
|
||||
:return: batch of corresponding values in numpy array
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_value_tensor(self):
|
||||
"""
|
||||
|
||||
:return: tensor of the corresponding values
|
||||
"""
|
||||
return self._value_tensor
|
23
tianshou/core/value_function/state_value.py
Normal file
23
tianshou/core/value_function/state_value.py
Normal file
@ -0,0 +1,23 @@
|
||||
from base import ValueFunctionBase
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class StateValue(ValueFunctionBase):
|
||||
"""
|
||||
class of state values V(s).
|
||||
"""
|
||||
def __init__(self, value_tensor, observation_placeholder):
|
||||
super(StateValue, self).__init__(
|
||||
value_tensor=value_tensor,
|
||||
observation_placeholder=observation_placeholder
|
||||
)
|
||||
|
||||
def get_value(self, observation):
|
||||
"""
|
||||
|
||||
:param observation: numpy array of observations, of shape (batchsize, observation_dim).
|
||||
:return: numpy array of state values, of shape (batchsize, )
|
||||
# TODO: dealing with the last dim of 1 in V(s) and Q(s, a)
|
||||
"""
|
||||
sess = tf.get_default_session()
|
||||
return sess.run(self.get_value_tensor(), feed_dict={self._observation_placeholder: observation})[:, 0]
|
Loading…
x
Reference in New Issue
Block a user