call nstep_q_return from dqn_replay.py, still need test
This commit is contained in:
parent
2a2274aeea
commit
24d75fd1aa
@ -1,95 +0,0 @@
|
|||||||
#!/usr/bin/env python
|
|
||||||
from __future__ import absolute_import
|
|
||||||
|
|
||||||
import tensorflow as tf
|
|
||||||
import gym
|
|
||||||
import numpy as np
|
|
||||||
import time
|
|
||||||
|
|
||||||
# our lib imports here! It's ok to append path in examples
|
|
||||||
import sys
|
|
||||||
sys.path.append('..')
|
|
||||||
from tianshou.core import losses
|
|
||||||
from tianshou.data.batch import Batch
|
|
||||||
import tianshou.data.advantage_estimation as advantage_estimation
|
|
||||||
import tianshou.core.policy.dqn as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
|
||||||
import tianshou.core.value_function.action_value as value_function
|
|
||||||
import tianshou.data.replay_buffer.proportional as proportional
|
|
||||||
import tianshou.data.replay_buffer.rank_based as rank_based
|
|
||||||
import tianshou.data.replay_buffer.naive as naive
|
|
||||||
import tianshou.data.replay_buffer.Replay as Replay
|
|
||||||
|
|
||||||
|
|
||||||
# TODO: why this solves cartpole even without training?
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
env = gym.make('CartPole-v0')
|
|
||||||
observation_dim = env.observation_space.shape
|
|
||||||
action_dim = env.action_space.n
|
|
||||||
|
|
||||||
clip_param = 0.2
|
|
||||||
num_batches = 10
|
|
||||||
batch_size = 512
|
|
||||||
|
|
||||||
seed = 0
|
|
||||||
np.random.seed(seed)
|
|
||||||
tf.set_random_seed(seed)
|
|
||||||
|
|
||||||
### 1. build network with pure tf
|
|
||||||
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
|
|
||||||
|
|
||||||
def my_network():
|
|
||||||
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
|
||||||
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
|
||||||
|
|
||||||
action_values = tf.layers.dense(net, action_dim, activation=None)
|
|
||||||
|
|
||||||
return None, action_values # no policy head
|
|
||||||
|
|
||||||
### 2. build policy, loss, optimizer
|
|
||||||
dqn = value_function.DQN(my_network, observation_placeholder=observation_ph, weight_update=100)
|
|
||||||
pi = policy.DQN(dqn)
|
|
||||||
|
|
||||||
dqn_loss = losses.qlearning(dqn)
|
|
||||||
|
|
||||||
total_loss = dqn_loss
|
|
||||||
global_step = tf.Variable(0, name='global_step', trainable=False)
|
|
||||||
optimizer = tf.train.AdamOptimizer(1e-4)
|
|
||||||
train_op = optimizer.minimize(total_loss, var_list=dqn.trainable_variables, global_step=tf.train.get_global_step())
|
|
||||||
|
|
||||||
# replay_memory = naive.NaiveExperience({'size': 1000})
|
|
||||||
replay_memory = rank_based.RankBasedExperience({'size': 30})
|
|
||||||
# replay_memory = proportional.PropotionalExperience({'size': 100, 'batch_size': 10})
|
|
||||||
data_collector = Replay.Replay(replay_memory, env, pi, [advantage_estimation.ReplayMemoryQReturn(1, dqn)], [dqn])
|
|
||||||
|
|
||||||
### 3. define data collection
|
|
||||||
# data_collector = Batch(env, pi, [advantage_estimation.nstep_q_return(1, dqn)], [dqn])
|
|
||||||
|
|
||||||
### 4. start training
|
|
||||||
config = tf.ConfigProto()
|
|
||||||
config.gpu_options.allow_growth = True
|
|
||||||
with tf.Session(config=config) as sess:
|
|
||||||
sess.run(tf.global_variables_initializer())
|
|
||||||
|
|
||||||
# assign actor to pi_old
|
|
||||||
pi.sync_weights() # TODO: automate this for policies with target network
|
|
||||||
|
|
||||||
start_time = time.time()
|
|
||||||
#TODO : repeat_num shoulde be defined in some configuration files
|
|
||||||
repeat_num = 100
|
|
||||||
for i in range(repeat_num):
|
|
||||||
# collect data
|
|
||||||
# data_collector.collect(nums=50)
|
|
||||||
data_collector.collect(num_episodes=50, epsilon_greedy= (repeat_num - i + 0.0) / repeat_num)
|
|
||||||
|
|
||||||
# print current return
|
|
||||||
print('Epoch {}:'.format(i))
|
|
||||||
data_collector.statistics()
|
|
||||||
|
|
||||||
# update network
|
|
||||||
for _ in range(num_batches):
|
|
||||||
feed_dict = data_collector.next_batch(batch_size, tf.train.global_step(sess, global_step))
|
|
||||||
sess.run(train_op, feed_dict=feed_dict)
|
|
||||||
|
|
||||||
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))
|
|
@ -14,6 +14,7 @@ from tianshou.core import losses
|
|||||||
import tianshou.data.advantage_estimation as advantage_estimation
|
import tianshou.data.advantage_estimation as advantage_estimation
|
||||||
import tianshou.core.policy.dqn as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
import tianshou.core.policy.dqn as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
||||||
import tianshou.core.value_function.action_value as value_function
|
import tianshou.core.value_function.action_value as value_function
|
||||||
|
import sys
|
||||||
|
|
||||||
from tianshou.data.replay_buffer.vanilla import VanillaReplayBuffer
|
from tianshou.data.replay_buffer.vanilla import VanillaReplayBuffer
|
||||||
from tianshou.data.data_collector import DataCollector
|
from tianshou.data.data_collector import DataCollector
|
||||||
@ -79,7 +80,7 @@ if __name__ == '__main__':
|
|||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
epsilon = 0.5
|
epsilon = 0.5
|
||||||
pi.set_epsilon_train(epsilon)
|
pi.set_epsilon_train(epsilon)
|
||||||
data_collector.collect(num_timesteps=1e3) # warm-up
|
data_collector.collect(num_timesteps=int(1e3)) # warm-up
|
||||||
for i in range(int(1e8)): # number of training steps
|
for i in range(int(1e8)): # number of training steps
|
||||||
# anneal epsilon step-wise
|
# anneal epsilon step-wise
|
||||||
if (i + 1) % 1e4 == 0 and epsilon > 0.1:
|
if (i + 1) % 1e4 == 0 and epsilon > 0.1:
|
||||||
@ -101,4 +102,4 @@ if __name__ == '__main__':
|
|||||||
if i % 1000 == 0:
|
if i % 1000 == 0:
|
||||||
# epsilon 0.05 as in nature paper
|
# epsilon 0.05 as in nature paper
|
||||||
pi.set_epsilon_test(0.05)
|
pi.set_epsilon_test(0.05)
|
||||||
test(env, pi) # go for act_test of pi, not act
|
#test(env, pi) # go for act_test of pi, not act
|
||||||
|
@ -8,20 +8,20 @@ REWARD = 2
|
|||||||
DONE = 3
|
DONE = 3
|
||||||
|
|
||||||
# modified for new interfaces
|
# modified for new interfaces
|
||||||
def full_return(buffer, index=None):
|
def full_return(buffer, indexes=None):
|
||||||
"""
|
"""
|
||||||
naively compute full return
|
naively compute full return
|
||||||
:param buffer: buffer with property index and data. index determines the current content in `buffer`.
|
:param buffer: buffer with property index and data. index determines the current content in `buffer`.
|
||||||
:param index: (sampled) index to be computed. Defaults to all the data in `buffer`. Not necessarily in order within
|
:param indexes: (sampled) index to be computed. Defaults to all the data in `buffer`. Not necessarily in order within
|
||||||
each episode.
|
each episode.
|
||||||
:return: dict with key 'return' and value the computed returns corresponding to `index`.
|
:return: dict with key 'return' and value the computed returns corresponding to `index`.
|
||||||
"""
|
"""
|
||||||
index = index or buffer.index
|
indexes = indexes or buffer.index
|
||||||
raw_data = buffer.data
|
raw_data = buffer.data
|
||||||
|
|
||||||
returns = []
|
returns = []
|
||||||
for i_episode in range(len(index)):
|
for i_episode in range(len(indexes)):
|
||||||
index_this = index[i_episode]
|
index_this = indexes[i_episode]
|
||||||
if index_this:
|
if index_this:
|
||||||
episode = raw_data[i_episode]
|
episode = raw_data[i_episode]
|
||||||
if not episode[-1][DONE]:
|
if not episode[-1][DONE]:
|
||||||
@ -111,7 +111,7 @@ class nstep_q_return:
|
|||||||
self.use_target_network = use_target_network
|
self.use_target_network = use_target_network
|
||||||
|
|
||||||
# TODO : we should transfer the tf -> numpy/python -> tf into a monolithic compute graph in tf
|
# TODO : we should transfer the tf -> numpy/python -> tf into a monolithic compute graph in tf
|
||||||
def __call__(self, buffer, index=None):
|
def __call__(self, buffer, indexes=None):
|
||||||
"""
|
"""
|
||||||
:param buffer: buffer with property index and data. index determines the current content in `buffer`.
|
:param buffer: buffer with property index and data. index determines the current content in `buffer`.
|
||||||
:param index: (sampled) index to be computed. Defaults to all the data in `buffer`. Not necessarily in order within
|
:param index: (sampled) index to be computed. Defaults to all the data in `buffer`. Not necessarily in order within
|
||||||
@ -119,7 +119,7 @@ class nstep_q_return:
|
|||||||
:return: dict with key 'return' and value the computed returns corresponding to `index`.
|
:return: dict with key 'return' and value the computed returns corresponding to `index`.
|
||||||
"""
|
"""
|
||||||
qvalue = self.action_value._value_tensor_all_actions
|
qvalue = self.action_value._value_tensor_all_actions
|
||||||
index = index or buffer.index
|
indexes = indexes or buffer.index
|
||||||
episodes = buffer.data
|
episodes = buffer.data
|
||||||
discount_factor = 0.99
|
discount_factor = 0.99
|
||||||
returns = []
|
returns = []
|
||||||
@ -128,8 +128,8 @@ class nstep_q_return:
|
|||||||
config.gpu_options.allow_growth = True
|
config.gpu_options.allow_growth = True
|
||||||
with tf.Session(config=config) as sess:
|
with tf.Session(config=config) as sess:
|
||||||
sess.run(tf.global_variables_initializer())
|
sess.run(tf.global_variables_initializer())
|
||||||
for episode_index in range(len(index)):
|
for episode_index in range(len(indexes)):
|
||||||
index = index[episode_index]
|
index = indexes[episode_index]
|
||||||
if index:
|
if index:
|
||||||
episode = episodes[episode_index]
|
episode = episodes[episode_index]
|
||||||
episode_q = []
|
episode_q = []
|
||||||
@ -145,9 +145,11 @@ class nstep_q_return:
|
|||||||
current_discount_factor *= discount_factor
|
current_discount_factor *= discount_factor
|
||||||
last_frame_index = lfi
|
last_frame_index = lfi
|
||||||
if last_frame_index > i:
|
if last_frame_index > i:
|
||||||
target_q += current_discount_factor * \
|
state = episode[last_frame_index][STATE]
|
||||||
max(sess.run(qvalue, feed_dict={self.action_value.managed_placeholders['observation']:
|
# the shape of qpredict is [batch_size, action_dimension]
|
||||||
episode[last_frame_index][STATE]}))
|
qpredict = sess.run(qvalue, feed_dict={self.action_value.managed_placeholders['observation']:
|
||||||
|
state.reshape(1, state.shape[0])})
|
||||||
|
target_q += current_discount_factor * max(qpredict[0])
|
||||||
episode_q.append(target_q)
|
episode_q.append(target_q)
|
||||||
|
|
||||||
returns.append(episode_q)
|
returns.append(episode_q)
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import logging
|
import logging
|
||||||
import itertools
|
import itertools
|
||||||
|
import sys
|
||||||
|
|
||||||
from .replay_buffer.base import ReplayBufferBase
|
from .replay_buffer.base import ReplayBufferBase
|
||||||
|
|
||||||
@ -59,7 +60,7 @@ class DataCollector(object):
|
|||||||
sampled_index = self.data_buffer.sample(batch_size)
|
sampled_index = self.data_buffer.sample(batch_size)
|
||||||
if self.process_mode == 'sample':
|
if self.process_mode == 'sample':
|
||||||
for processor in self.process_functions:
|
for processor in self.process_functions:
|
||||||
self.data_batch.update(processor(self.data_buffer, index=sampled_index))
|
self.data_batch.update(processor(self.data_buffer, indexes=sampled_index))
|
||||||
|
|
||||||
# flatten rank-2 list to numpy array, construct feed_dict
|
# flatten rank-2 list to numpy array, construct feed_dict
|
||||||
feed_dict = {}
|
feed_dict = {}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user