implement data collection and part of training
This commit is contained in:
parent
1e2567c174
commit
2dad8e4020
@ -183,11 +183,15 @@ class GTPEngine():
|
||||
return 'unknown player', False
|
||||
|
||||
def cmd_get_score(self, args, **kwargs):
|
||||
return self._game.game_engine.executor_get_score(True), None
|
||||
return self._game.game_engine.executor_get_score(True), True
|
||||
|
||||
def cmd_show_board(self, args, **kwargs):
|
||||
return self._game.board, True
|
||||
|
||||
def cmd_get_prob(self, args, **kwargs):
|
||||
return self._game.prob, True
|
||||
|
||||
|
||||
if __name__ == "main":
|
||||
game = Game()
|
||||
engine = GTPEngine(game_obj=Game)
|
||||
|
@ -58,24 +58,9 @@ class Game:
|
||||
def set_komi(self, k):
|
||||
self.komi = k
|
||||
|
||||
def generate_nn_input(self, latest_boards, color):
|
||||
state = np.zeros([1, self.size, self.size, 17])
|
||||
for i in range(8):
|
||||
state[0, :, :, i] = np.array(np.array(latest_boards[i]) == np.ones(self.size ** 2)).reshape(self.size, self.size)
|
||||
state[0, :, :, i + 8] = np.array(np.array(latest_boards[i]) == -np.ones(self.size ** 2)).reshape(self.size, self.size)
|
||||
if color == utils.BLACK:
|
||||
state[0, :, :, 16] = np.ones([self.size, self.size])
|
||||
if color == utils.WHITE:
|
||||
state[0, :, :, 16] = np.zeros([self.size, self.size])
|
||||
return state
|
||||
|
||||
def think(self, latest_boards, color):
|
||||
# TODO : using copy is right, or should we change to deepcopy?
|
||||
self.game_engine.simulate_latest_boards = copy.copy(latest_boards)
|
||||
self.game_engine.simulate_board = copy.copy(latest_boards[-1])
|
||||
nn_input = self.generate_nn_input(self.game_engine.simulate_latest_boards, color)
|
||||
mcts = MCTS(self.game_engine, self.evaluator, [self.game_engine.simulate_latest_boards, color], self.size ** 2 + 1, inverse=True)
|
||||
mcts.search(max_step=5)
|
||||
mcts = MCTS(self.game_engine, self.evaluator, [latest_boards, color], self.size ** 2 + 1, inverse=True)
|
||||
mcts.search(max_step=1)
|
||||
temp = 1
|
||||
prob = mcts.root.N ** temp / np.sum(mcts.root.N ** temp)
|
||||
choice = np.random.choice(self.size ** 2 + 1, 1, p=prob).tolist()[0]
|
||||
|
@ -1,6 +1,7 @@
|
||||
import os
|
||||
import time
|
||||
import sys
|
||||
import cPickle
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
@ -167,4 +168,19 @@ class ResNet(object):
|
||||
|
||||
#TODO: design the interface between the environment and training
|
||||
def train(self, mode='memory', *args, **kwargs):
|
||||
pass
|
||||
if mode == 'memory':
|
||||
pass
|
||||
if mode == 'file':
|
||||
self.train_with_file(data_path=kwargs['data_path'], checkpoint_path=kwargs['checkpoint_path'])
|
||||
|
||||
def train_with_file(self, data_path, checkpoint_path):
|
||||
if not os.path.exists(data_path):
|
||||
raise ValueError("{} doesn't exist".format(data_path))
|
||||
|
||||
file_list = os.listdir(data_path)
|
||||
if file_list <= 50:
|
||||
time.sleep(1)
|
||||
else:
|
||||
file_list.sort(key=lambda file: os.path.getmtime(data_path + file) if not os.path.isdir(
|
||||
data_path + file) else 0)
|
||||
|
||||
|
115
AlphaGo/play.py
115
AlphaGo/play.py
@ -5,6 +5,18 @@ import re
|
||||
import Pyro4
|
||||
import time
|
||||
import os
|
||||
import cPickle
|
||||
|
||||
|
||||
class Data(object):
|
||||
def __init__(self):
|
||||
self.boards = []
|
||||
self.probs = []
|
||||
self.winner = 0
|
||||
|
||||
def reset(self):
|
||||
self.__init__()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
"""
|
||||
@ -13,10 +25,13 @@ if __name__ == '__main__':
|
||||
"""
|
||||
# TODO : we should set the network path in a more configurable way.
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--result_path", type=str, default="./data/")
|
||||
parser.add_argument("--black_weight_path", type=str, default=None)
|
||||
parser.add_argument("--white_weight_path", type=str, default=None)
|
||||
args = parser.parse_args()
|
||||
|
||||
if not os.path.exists(args.result_path):
|
||||
os.mkdir(args.result_path)
|
||||
# black_weight_path = "./checkpoints"
|
||||
# white_weight_path = "./checkpoints_origin"
|
||||
if args.black_weight_path is not None and (not os.path.exists(args.black_weight_path)):
|
||||
@ -35,11 +50,13 @@ if __name__ == '__main__':
|
||||
time.sleep(1)
|
||||
|
||||
# start two different player with different network weights.
|
||||
agent_v0 = subprocess.Popen(['python', '-u', 'player.py', '--role=black', '--checkpoint_path=' + str(args.black_weight_path)],
|
||||
stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
||||
agent_v0 = subprocess.Popen(
|
||||
['python', '-u', 'player.py', '--role=black', '--checkpoint_path=' + str(args.black_weight_path)],
|
||||
stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
||||
|
||||
agent_v1 = subprocess.Popen(['python', '-u', 'player.py', '--role=white', '--checkpoint_path=' + str(args.white_weight_path)],
|
||||
stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
||||
agent_v1 = subprocess.Popen(
|
||||
['python', '-u', 'player.py', '--role=white', '--checkpoint_path=' + str(args.white_weight_path)],
|
||||
stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
||||
|
||||
server_list = ""
|
||||
while ("black" not in server_list) or ("white" not in server_list):
|
||||
@ -50,6 +67,7 @@ if __name__ == '__main__':
|
||||
print "Start black player at : " + str(agent_v0.pid)
|
||||
print "Start white player at : " + str(agent_v1.pid)
|
||||
|
||||
data = Data()
|
||||
player = [None] * 2
|
||||
player[0] = Pyro4.Proxy("PYRONAME:black")
|
||||
player[1] = Pyro4.Proxy("PYRONAME:white")
|
||||
@ -63,39 +81,58 @@ if __name__ == '__main__':
|
||||
|
||||
evaluate_rounds = 1
|
||||
game_num = 0
|
||||
while game_num < evaluate_rounds:
|
||||
num = 0
|
||||
pass_flag = [False, False]
|
||||
print("Start game {}".format(game_num))
|
||||
# end the game if both palyer chose to pass, or play too much turns
|
||||
while not (pass_flag[0] and pass_flag[1]) and num < size ** 2 * 2:
|
||||
turn = num % 2
|
||||
move = player[turn].run_cmd(str(num) + ' genmove ' + color[turn] + '\n')
|
||||
print role[turn] + " : " + str(move),
|
||||
num += 1
|
||||
match = re.search(pattern, move)
|
||||
if match is not None:
|
||||
# print "match : " + str(match.group())
|
||||
play_or_pass = match.group()
|
||||
pass_flag[turn] = False
|
||||
try:
|
||||
while True:
|
||||
num = 0
|
||||
pass_flag = [False, False]
|
||||
print("Start game {}".format(game_num))
|
||||
# end the game if both palyer chose to pass, or play too much turns
|
||||
while not (pass_flag[0] and pass_flag[1]) and num < size ** 2 * 2:
|
||||
turn = num % 2
|
||||
move = player[turn].run_cmd(str(num) + ' genmove ' + color[turn] + '\n')
|
||||
print role[turn] + " : " + str(move),
|
||||
num += 1
|
||||
match = re.search(pattern, move)
|
||||
if match is not None:
|
||||
# print "match : " + str(match.group())
|
||||
play_or_pass = match.group()
|
||||
pass_flag[turn] = False
|
||||
else:
|
||||
# print "no match"
|
||||
play_or_pass = ' PASS'
|
||||
pass_flag[turn] = True
|
||||
result = player[1 - turn].run_cmd(str(num) + ' play ' + color[turn] + ' ' + play_or_pass + '\n')
|
||||
board = player[turn].run_cmd(str(num) + ' show_board')
|
||||
board = eval(board[board.index('['):board.index(']') + 1])
|
||||
for i in range(size):
|
||||
for j in range(size):
|
||||
print show[board[i * size + j]] + " ",
|
||||
print "\n",
|
||||
data.boards.append(board)
|
||||
prob = player[turn].run_cmd(str(num) + ' get_prob')
|
||||
data.probs.append(prob)
|
||||
score = player[turn].run_cmd(str(num) + ' get_score')
|
||||
print "Finished : ", score.split(" ")[1]
|
||||
# TODO: generalize the player
|
||||
if score > 0:
|
||||
data.winner = 1
|
||||
if score < 0:
|
||||
data.winner = -1
|
||||
player[0].run_cmd(str(num) + ' clear_board')
|
||||
player[1].run_cmd(str(num) + ' clear_board')
|
||||
file_list = os.listdir(args.result_path)
|
||||
if not file_list:
|
||||
data_num = 0
|
||||
else:
|
||||
# print "no match"
|
||||
play_or_pass = ' PASS'
|
||||
pass_flag[turn] = True
|
||||
result = player[1 - turn].run_cmd(str(num) + ' play ' + color[turn] + ' ' + play_or_pass + '\n')
|
||||
board = player[turn].run_cmd(str(num) + ' show_board')
|
||||
board = eval(board[board.index('['):board.index(']') + 1])
|
||||
for i in range(size):
|
||||
for j in range(size):
|
||||
print show[board[i * size + j]] + " ",
|
||||
print "\n",
|
||||
|
||||
score = player[turn].run_cmd(str(num) + ' get_score')
|
||||
print "Finished : ", score.split(" ")[1]
|
||||
player[0].run_cmd(str(num) + ' clear_board')
|
||||
player[1].run_cmd(str(num) + ' clear_board')
|
||||
game_num += 1
|
||||
|
||||
subprocess.call(["kill", "-9", str(agent_v0.pid)])
|
||||
subprocess.call(["kill", "-9", str(agent_v1.pid)])
|
||||
print "Kill all player, finish all game."
|
||||
file_list.sort(key=lambda file: os.path.getmtime(args.result_path + file) if not os.path.isdir(
|
||||
args.result_path + file) else 0)
|
||||
data_num = eval(file_list[-1][:-4]) + 1
|
||||
print(file_list)
|
||||
with open("./data/" + str(data_num) + ".pkl", "w") as file:
|
||||
picklestring = cPickle.dump(data, file)
|
||||
data.reset()
|
||||
game_num += 1
|
||||
except KeyboardInterrupt:
|
||||
subprocess.call(["kill", "-9", str(agent_v0.pid)])
|
||||
subprocess.call(["kill", "-9", str(agent_v1.pid)])
|
||||
print "Kill all player, finish all game."
|
||||
|
@ -20,6 +20,7 @@ class Player(object):
|
||||
#return "inside the Player of player.py"
|
||||
return self.engine.run_cmd(command)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--checkpoint_path", type=str, default=None)
|
||||
|
Loading…
x
Reference in New Issue
Block a user