mcts framework

This commit is contained in:
Dong Yan 2017-11-16 13:21:27 +08:00
parent d9368c9a78
commit 30427055d1
7 changed files with 291 additions and 3 deletions

View File

@ -70,7 +70,7 @@ total_loss = value_loss + policy_loss + reg
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = tf.train.RMSPropOptimizer(1e-4).minimize(total_loss)
var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
saver = tf.train.Saver(max_to_keep=10, var_list=var_list)
@ -131,13 +131,21 @@ def train():
def forward(call_number):
#checkpoint_path = "/home/yama/rl/tianshou/AlphaGo/checkpoints"
checkpoint_path = "/home/yama/rl/tianshou/AlphaGo/checkpoints/jialian"
checkpoint_path = "/home/yama/rl/tianshou/AlphaGo/checkpoints"
board_file = np.genfromtxt("/home/yama/rl/tianshou/leela-zero/src/mcts_nn_files/board_" + call_number, dtype='str');
human_board = np.zeros((17, 19, 19))
#TODO : is it ok to ignore the last channel?
for i in range(17):
human_board[i] = np.array(list(board_file[i])).reshape(19, 19)
#print("============================")
#print("human board sum : " + str(np.sum(human_board[-1])))
#print("============================")
#print(human_board)
#print("============================")
#rint(human_board)
feed_board = human_board.transpose(1, 2, 0).reshape(1, 19, 19, 17)
#print(feed_board[:,:,:,-1])
#print(feed_board.shape)
#npz_board = np.load("/home/yama/rl/tianshou/AlphaGo/data/7f83928932f64a79bc1efdea268698ae.npz")
@ -148,7 +156,7 @@ def forward(call_number):
#print("board shape : ", show_board.shape)
#print(show_board)
itflag = True
itflag = False
with multi_gpu.create_session() as sess:
sess.run(tf.global_variables_initializer())
ckpt_file = tf.train.latest_checkpoint(checkpoint_path)

173
AlphaGo/Network_ori.py Normal file
View File

@ -0,0 +1,173 @@
import os
import time
import gc
import numpy as np
import tensorflow as tf
import tensorflow.contrib.layers as layers
import multi_gpu
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
def residual_block(input, is_training):
normalizer_params = {'is_training': is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS}
h = layers.conv2d(input, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.conv2d(h, 256, kernel_size=3, stride=1, activation_fn=tf.identity,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = h + input
return tf.nn.relu(h)
def policy_heads(input, is_training):
normalizer_params = {'is_training': is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS}
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.flatten(h)
h = layers.fully_connected(h, 362, activation_fn=tf.identity, weights_regularizer=layers.l2_regularizer(1e-4))
return h
def value_heads(input, is_training):
normalizer_params = {'is_training': is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS}
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.flatten(h)
h = layers.fully_connected(h, 256, activation_fn=tf.nn.relu, weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.fully_connected(h, 1, activation_fn=tf.nn.tanh, weights_regularizer=layers.l2_regularizer(1e-4))
return h
x = tf.placeholder(tf.float32, shape=[None, 19, 19, 17])
is_training = tf.placeholder(tf.bool, shape=[])
z = tf.placeholder(tf.float32, shape=[None, 1])
pi = tf.placeholder(tf.float32, shape=[None, 362])
h = layers.conv2d(x, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu, normalizer_fn=layers.batch_norm,
normalizer_params={'is_training': is_training, 'updates_collections': tf.GraphKeys.UPDATE_OPS},
weights_regularizer=layers.l2_regularizer(1e-4))
for i in range(19):
h = residual_block(h, is_training)
v = value_heads(h, is_training)
p = policy_heads(h, is_training)
# loss = tf.reduce_mean(tf.square(z-v)) - tf.multiply(pi, tf.log(tf.clip_by_value(tf.nn.softmax(p), 1e-8, tf.reduce_max(tf.nn.softmax(p)))))
value_loss = tf.reduce_mean(tf.square(z - v))
policy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=pi, logits=p))
reg = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
total_loss = value_loss + policy_loss + reg
# train_op = tf.train.MomentumOptimizer(1e-4, momentum=0.9, use_nesterov=True).minimize(total_loss)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = tf.train.RMSPropOptimizer(1e-4).minimize(total_loss)
var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
saver = tf.train.Saver(max_to_keep=10, var_list=var_list)
def train():
data_path = "/home/tongzheng/data/"
data_name = os.listdir("/home/tongzheng/data/")
epochs = 100
batch_size = 128
result_path = "./checkpoints/"
with multi_gpu.create_session() as sess:
sess.run(tf.global_variables_initializer())
ckpt_file = tf.train.latest_checkpoint(result_path)
if ckpt_file is not None:
print('Restoring model from {}...'.format(ckpt_file))
saver.restore(sess, ckpt_file)
for epoch in range(epochs):
for name in data_name:
data = np.load(data_path + name)
boards = data["boards"]
wins = data["wins"]
ps = data["ps"]
print (boards.shape)
print (wins.shape)
print (ps.shape)
# batch_num = 1
batch_num = boards.shape[0] // batch_size
index = np.arange(boards.shape[0])
np.random.shuffle(index)
value_losses = []
policy_losses = []
regs = []
time_train = -time.time()
for iter in range(batch_num):
lv, lp, r, _ = sess.run([value_loss, policy_loss, reg, train_op],
feed_dict={x: boards[
index[iter * batch_size:(iter + 1) * batch_size]],
z: wins[index[
iter * batch_size:(iter + 1) * batch_size]],
pi: ps[index[
iter * batch_size:(iter + 1) * batch_size]],
is_training: True})
value_losses.append(lv)
policy_losses.append(lp)
regs.append(r)
del lv, lp, r
if iter % 1 == 0:
print(
"Epoch: {}, Part {}, Iteration: {}, Time: {}, Value Loss: {}, Policy Loss: {}, Reg: {}".format(
epoch, name, iter, time.time() + time_train, np.mean(np.array(value_losses)),
np.mean(np.array(policy_losses)), np.mean(np.array(regs))))
del value_losses, policy_losses, regs, time_train
time_train = -time.time()
value_losses = []
policy_losses = []
regs = []
if iter % 20 == 0:
save_path = "Epoch{}.Part{}.Iteration{}.ckpt".format(epoch, name, iter)
saver.save(sess, result_path + save_path)
del save_path
del data, boards, wins, ps, batch_num, index
gc.collect()
def forward(board):
result_path = "./checkpoints"
itflag = False
res = None
if board is None:
# data = np.load("/home/tongzheng/meta-data/80b7bf21bce14862806d48c3cd760a1b.npz")
data = np.load("./data/7f83928932f64a79bc1efdea268698ae.npz")
board = data["boards"][50].reshape(-1, 19, 19, 17)
human_board = board[0].transpose(2, 0, 1)
print("============================")
print("human board sum : " + str(np.sum(human_board)))
print("============================")
print(board[:,:,:,-1])
itflag = False
with multi_gpu.create_session() as sess:
sess.run(tf.global_variables_initializer())
ckpt_file = tf.train.latest_checkpoint(result_path)
if ckpt_file is not None:
print('Restoring model from {}...'.format(ckpt_file))
saver.restore(sess, ckpt_file)
else:
raise ValueError("No model loaded")
res = sess.run([tf.nn.softmax(p), v], feed_dict={x: board, is_training: itflag})
# res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][300].reshape(-1, 19, 19, 17), is_training:False})
# res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][50].reshape(-1, 19, 19, 17), is_training:True})
# print(np.argmax(res[0]))
print(res)
print(data["p"][0])
print(np.argmax(res[0]))
print(np.argmax(data["p"][0]))
# print(res[0].tolist()[0])
# print(np.argmax(res[0]))
return res
if __name__ == '__main__':
# train()
# if sys.argv[1] == "test":
forward(None)

View File

@ -0,0 +1,5 @@
{
"global_description": "read by Environment, Neural Network, and MCTS",
"state_space": " ",
"action_space": " "
}

73
tianshou/core/mcts.py Normal file
View File

@ -0,0 +1,73 @@
import numpy as np
import math
import json
js = json.load("state_mask.json")
action_num = 2
c_puct = 5.
class MCTSNode:
def __init__(self, parent, action, state, action_num, prior):
self.parent = parent
self.action = action
self.children = {}
self.state = state
self.action_num = action_num
self.prior = prior
def select_leaf(self):
raise NotImplementedError("Need to implement function select_leaf")
def backup_value(self, action, value):
raise NotImplementedError("Need to implement function backup_value")
def expand(self, action):
raise NotImplementedError("Need to implement function expand")
def iteration(self):
raise NotImplementedError("Need to implement function iteration")
class UCTNode(MCTSNode):
def __init__(self, parent, action, state, action_num, prior):
super(UCTNode, self).__init__(parent, action, state, action_num, prior)
self.Q = np.zeros([action_num])
self.W = np.zeros([action_num])
self.N = np.zeros([action_num])
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
def select_leaf(self):
action = np.argmax(self.ucb)
if action in self.children.keys():
self.children[action].select_leaf()
else:
# TODO: apply the action and evalate next state
# state, value = self.env.step_forward(self.state, action)
# self.children[action] = MCTSNode(self.env, self, action, state, prior)
# self.backup_value(action, value)
state, value = self.expand(action)
self.children[action] = UCTNode(self.env, self, action, state, prior)
def backup_value(self, action, value):
self.N[action] += 1
self.W[action] += 1
self.Q = self.W / self.N
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
self.parent.backup_value(self.parent.action, value)
class TSNode(MCTSNode):
def __init__(self, parent, action, state, action_num, prior, method="Gaussian"):
super(TSNode, self).__init__(parent, action, state, action_num, prior)
if method == "Beta":
self.alpha = np.ones([action_num])
self.beta = np.ones([action_num])
if method == "Gaussian":
self.mu = np.zeros([action_num])
self.sigma = np.zeros([action_num])
class ActionNode:
def __init__(self, parent, action):
self.parent = parent
self.action = action
self.children = {}

View File

@ -0,0 +1,25 @@
import numpy as np
class TestEnv:
def __init__(self, max_step=5):
self.step = 0
self.state = 0
self.max_step = max_step
self.reward = {i:np.random.uniform() for i in range(2**max_step)}
self.best = max(self.reward.items(), key=lambda x:x[1])
print("The best arm is {} with expected reward {}".format(self.best[0],self.best[1]))
def step_forward(self, action):
print("Operate action {} at timestep {}".format(action, self.step))
self.state = self.state + 2**self.step*action
self.step = self.step + 1
if self.step == self.max_step:
reward = int(np.random.uniform() > self.reward[self.state])
print("Get reward {}".format(reward))
else:
reward = 0
return [self.state, reward]
if __name__=="__main__":
env = TestEnv(1)
env.step_forward(1)

View File

View File

@ -0,0 +1,4 @@
{
"state" : "10",
"mask" : "1000"
}