Buffer refactoring to support batch over batch reliably (#93)

* Fix support of batch over batch for Buffer.

* Do not use internal __dict__ attribute to store batch data since it breaks inheritance.

* Various fixes.

* Improve robustness of Batch/Buffer by avoiding direct attribute assignment. Buffer refactoring.

* Add axis optional argument to Batch stack method.

* Add item assignment to Batch class.

* Fix list support for Buffer.

* Convert list to np.array by default for efficiency.

* Add missing unit test for Batch. Fix unit tests.

* Batch item assignment is now robust to key order.

* Do not use getattr/setattr explicity for simplicity.

* More flexible __setitem__.

* Fixes

* Remove broacasting at Batch level since it is unreliable.

* Forbid item assignement for inconsistent batches.

* Implement broadcasting at Buffer level.

* Add more unit test for Batch item assignment.

Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
This commit is contained in:
Alexis DUBURCQ 2020-06-25 14:39:30 +02:00 committed by GitHub
parent 506cc97ba5
commit 3086b5c31d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 233 additions and 195 deletions

View File

@ -65,6 +65,15 @@ def test_batch():
assert batch2_sum.a.b == (batch2.a.b + 1.0) * 2
assert batch2_sum.a.c == (batch2.a.c + 1.0) * 2
assert batch2_sum.a.d.e == (batch2.a.d.e + 1.0) * 2
batch3 = Batch(a={
'c': np.zeros(1),
'd': Batch(e=np.array([0.0]), f=np.array([3.0]))})
batch3.a.d[0] = {'e': 4.0}
assert batch3.a.d.e[0] == 4.0
batch3.a.d[0] = Batch(f=5.0)
assert batch3.a.d.f[0] == 5.0
with pytest.raises(ValueError):
batch3.a.d[0] = Batch(f=5.0, g=0.0)
def test_batch_over_batch():
@ -93,16 +102,20 @@ def test_batch_over_batch():
def test_batch_cat_and_stack():
b1 = Batch(a=[{'b': np.float64(1.0), 'd': Batch(e=np.array(3.0))}])
b2 = Batch(a=[{'b': np.float64(4.0), 'd': {'e': np.array(6.0)}}])
b_cat_out = Batch.cat((b1, b2))
b_cat_in = copy.deepcopy(b1)
b_cat_in.cat_(b2)
assert np.all(b_cat_in.a.d.e == b_cat_out.a.d.e)
assert np.all(b_cat_in.a.d.e == b_cat_out.a.d.e)
assert isinstance(b_cat_in.a.d.e, np.ndarray)
assert b_cat_in.a.d.e.ndim == 1
b_stack = Batch.stack((b1, b2))
assert isinstance(b_stack.a.d.e, np.ndarray)
assert b_stack.a.d.e.ndim == 2
b12_cat_out = Batch.cat((b1, b2))
b12_cat_in = copy.deepcopy(b1)
b12_cat_in.cat_(b2)
assert np.all(b12_cat_in.a.d.e == b12_cat_out.a.d.e)
assert np.all(b12_cat_in.a.d.e == b12_cat_out.a.d.e)
assert isinstance(b12_cat_in.a.d.e, np.ndarray)
assert b12_cat_in.a.d.e.ndim == 1
b12_stack = Batch.stack((b1, b2))
assert isinstance(b12_stack.a.d.e, np.ndarray)
assert b12_stack.a.d.e.ndim == 2
b3 = Batch(a=np.zeros((3, 4)))
b4 = Batch(a=np.ones((3, 4)))
b34_stack = Batch.stack((b3, b4), axis=1)
assert np.all(b34_stack.a == np.stack((b3.a, b4.a), axis=1))
def test_batch_over_batch_to_torch():

View File

@ -75,6 +75,11 @@ class Batch:
[11 22] [6 6]
"""
def __new__(cls, *args, **kwargs) -> 'Batch':
self = super().__new__(cls)
self.__dict__['_data'] = {}
return self
def __init__(self,
batch_dict: Optional[Union[
dict, 'Batch', Tuple[Union[dict, 'Batch']],
@ -95,21 +100,21 @@ class Batch:
for k, v in zip(batch_dict[0].keys(),
zip(*[e.values() for e in batch_dict])):
if isinstance(v[0], dict) or _is_batch_set(v[0]):
self.__dict__[k] = Batch(v)
self[k] = Batch(v)
elif isinstance(v[0], (np.generic, np.ndarray)):
self.__dict__[k] = np.stack(v, axis=0)
self[k] = np.stack(v, axis=0)
elif isinstance(v[0], torch.Tensor):
self.__dict__[k] = torch.stack(v, dim=0)
self[k] = torch.stack(v, dim=0)
elif isinstance(v[0], Batch):
self.__dict__[k] = Batch.stack(v)
self[k] = Batch.stack(v)
else:
self.__dict__[k] = list(v)
self[k] = np.array(v) # fall back to np.object
elif isinstance(batch_dict, (dict, Batch)):
for k, v in batch_dict.items():
if isinstance(v, dict) or _is_batch_set(v):
self.__dict__[k] = Batch(v)
self[k] = Batch(v)
else:
self.__dict__[k] = v
self[k] = v
if len(kwargs) > 0:
self.__init__(kwargs)
@ -140,8 +145,8 @@ class Batch:
if isinstance(index, (int, np.integer)):
return -length <= index and index < length
elif isinstance(index, (list, np.ndarray)):
return _valid_bounds(length, min(index)) and \
_valid_bounds(length, max(index))
return _valid_bounds(length, np.min(index)) and \
_valid_bounds(length, np.max(index))
elif isinstance(index, slice):
if index.start is not None:
start_valid = _valid_bounds(length, index.start)
@ -154,48 +159,75 @@ class Batch:
return start_valid and stop_valid
if isinstance(index, str):
return self.__getattr__(index)
return getattr(self, index)
if not _valid_bounds(len(self), index):
raise IndexError(
f"Index {index} out of bounds for Batch of len {len(self)}.")
else:
b = Batch()
for k, v in self.__dict__.items():
for k, v in self.items():
if isinstance(v, Batch) and v.size == 0:
b.__dict__[k] = Batch()
elif isinstance(v, list) and len(v) == 0:
b.__dict__[k] = []
b[k] = Batch()
elif hasattr(v, '__len__') and (not isinstance(
v, (np.ndarray, torch.Tensor)) or v.ndim > 0):
if _valid_bounds(len(v), index):
b.__dict__[k] = v[index]
if isinstance(index, (int, np.integer)) or \
(isinstance(index, np.ndarray) and
index.ndim == 0) or \
not isinstance(v, list):
b[k] = v[index]
else:
b[k] = [v[i] for i in index]
else:
raise IndexError(
f"Index {index} out of bounds for {type(v)} of "
f"len {len(self)}.")
return b
def __setitem__(self, index: Union[
str, slice, int, np.integer, np.ndarray, List[int]],
value: Any) -> None:
if isinstance(index, str):
return setattr(self, index, value)
if value is None:
value = Batch()
if not isinstance(value, (dict, Batch)):
raise TypeError("Batch does not supported value type "
f"{type(value)} for item assignment.")
if not set(value.keys()).issubset(self.keys()):
raise ValueError(
"Creating keys is not supported by item assignment.")
for key in self.keys():
if isinstance(self[key], Batch):
default = Batch()
elif isinstance(self[key], np.ndarray) and \
self[key].dtype == np.integer:
# Fallback for np.array of integer,
# since neither None or nan is supported.
default = 0
else:
default = None
self[key][index] = value.get(key, default)
def __iadd__(self, val: Union['Batch', Number]):
if isinstance(val, Batch):
for k, r, v in zip(self.__dict__.keys(),
self.__dict__.values(),
val.__dict__.values()):
for k, r, v in zip(self.keys(), self.values(), val.values()):
if r is None:
self.__dict__[k] = r
self[k] = r
elif isinstance(r, list):
self.__dict__[k] = [r_ + v_ for r_, v_ in zip(r, v)]
self[k] = [r_ + v_ for r_, v_ in zip(r, v)]
else:
self.__dict__[k] = r + v
self[k] = r + v
return self
elif isinstance(val, Number):
for k, r in zip(self.__dict__.keys(), self.__dict__.values()):
for k, r in zip(self.keys(), self.values()):
if r is None:
self.__dict__[k] = r
self[k] = r
elif isinstance(r, list):
self.__dict__[k] = [r_ + val for r_ in r]
self[k] = [r_ + val for r_ in r]
else:
self.__dict__[k] = r + val
self[k] = r + val
return self
else:
raise TypeError("Only addition of Batch or number is supported.")
@ -206,30 +238,40 @@ class Batch:
def __mul__(self, val: Number):
assert isinstance(val, Number), \
"Only multiplication by a number is supported."
result = Batch()
for k, r in zip(self.__dict__.keys(), self.__dict__.values()):
result.__dict__[k] = r * val
result = self.__class__()
for k, r in zip(self.keys(), self.values()):
result[k] = r * val
return result
def __truediv__(self, val: Number):
assert isinstance(val, Number), \
"Only division by a number is supported."
result = Batch()
for k, r in zip(self.__dict__.keys(), self.__dict__.values()):
result.__dict__[k] = r / val
result = self.__class__()
for k, r in zip(self.keys(), self.values()):
result[k] = r / val
return result
def __getattr__(self, key: str) -> Union['Batch', Any]:
"""Return self.key"""
if key not in self.__dict__:
raise AttributeError(key)
return self.__dict__[key]
if key in self.__dict__.keys():
return self.__dict__[key]
elif key in self._data.keys():
return self._data[key]
raise AttributeError(key)
def __setattr__(self, key, value):
if key in self._data.keys():
self._data[key] = value
elif key in self.__dict__.keys():
self.__dict__[key] = value
else:
self._data[key] = value
def __repr__(self) -> str:
"""Return str(self)."""
s = self.__class__.__name__ + '(\n'
flag = False
for k, v in self.__dict__.items():
for k, v in self.items():
rpl = '\n' + ' ' * (6 + len(k))
obj = pprint.pformat(v).replace('\n', rpl)
s += f' {k}: {obj},\n'
@ -242,29 +284,29 @@ class Batch:
def keys(self) -> List[str]:
"""Return self.keys()."""
return self.__dict__.keys()
return self._data.keys()
def values(self) -> List[Any]:
"""Return self.values()."""
return self.__dict__.values()
return self._data.values()
def items(self) -> Any:
"""Return self.items()."""
return self.__dict__.items()
return self._data.items()
def get(self, k: str, d: Optional[Any] = None) -> Union['Batch', Any]:
"""Return self[k] if k in self else d. d defaults to None."""
if k in self.__dict__:
return self.__getattr__(k)
if k in self.keys():
return self[k]
return d
def to_numpy(self) -> None:
"""Change all torch.Tensor to numpy.ndarray. This is an inplace
"""Change all torch.Tensor to numpy.ndarray. This is an in-place
operation.
"""
for k, v in self.__dict__.items():
for k, v in self.items():
if isinstance(v, torch.Tensor):
self.__dict__[k] = v.detach().cpu().numpy()
self[k] = v.detach().cpu().numpy()
elif isinstance(v, Batch):
v.to_numpy()
@ -272,18 +314,18 @@ class Batch:
dtype: Optional[torch.dtype] = None,
device: Union[str, int, torch.device] = 'cpu'
) -> None:
"""Change all numpy.ndarray to torch.Tensor. This is an inplace
"""Change all numpy.ndarray to torch.Tensor. This is an in-place
operation.
"""
if not isinstance(device, torch.device):
device = torch.device(device)
for k, v in self.__dict__.items():
for k, v in self.items():
if isinstance(v, (np.generic, np.ndarray)):
v = torch.from_numpy(v).to(device)
if dtype is not None:
v = v.type(dtype)
self.__dict__[k] = v
self[k] = v
if isinstance(v, torch.Tensor):
if dtype is not None and v.dtype != dtype:
must_update_tensor = True
@ -297,7 +339,7 @@ class Batch:
if must_update_tensor:
if dtype is not None:
v = v.type(dtype)
self.__dict__[k] = v.to(device)
self[k] = v.to(device)
elif isinstance(v, Batch):
v.to_torch(dtype, device)
@ -312,51 +354,67 @@ class Batch:
"""
assert isinstance(batch, Batch), \
'Only Batch is allowed to be concatenated in-place!'
for k, v in batch.__dict__.items():
for k, v in batch.items():
if v is None:
continue
if not hasattr(self, k) or self.__dict__[k] is None:
self.__dict__[k] = copy.deepcopy(v)
if not hasattr(self, k) or self[k] is None:
self[k] = copy.deepcopy(v)
elif isinstance(v, np.ndarray) and v.ndim > 0:
self.__dict__[k] = np.concatenate([self.__dict__[k], v])
self[k] = np.concatenate([self[k], v])
elif isinstance(v, torch.Tensor):
self.__dict__[k] = torch.cat([self.__dict__[k], v])
self[k] = torch.cat([self[k], v])
elif isinstance(v, list):
self.__dict__[k] += copy.deepcopy(v)
self[k] = self[k] + copy.deepcopy(v)
elif isinstance(v, Batch):
self.__dict__[k].cat_(v)
self[k].cat_(v)
else:
s = 'No support for method "cat" with type '\
f'{type(v)} in class Batch.'
raise TypeError(s)
@staticmethod
def cat(batches: List['Batch']) -> None:
@classmethod
def cat(cls, batches: List['Batch']) -> 'Batch':
"""Concatenate a :class:`~tianshou.data.Batch` object into a
single new batch.
"""
assert isinstance(batches, (tuple, list)), \
'Only list of Batch instances is allowed to be '\
'concatenated out-of-place!'
batch = Batch()
batch = cls()
for batch_ in batches:
batch.cat_(batch_)
return batch
@staticmethod
def stack(batches: List['Batch']):
@classmethod
def stack(cls, batches: List['Batch'], axis: int = 0) -> 'Batch':
"""Stack a :class:`~tianshou.data.Batch` object into a
single new batch.
"""
assert isinstance(batches, (tuple, list)), \
'Only list of Batch instances is allowed to be '\
'stacked out-of-place!'
return Batch(np.array([batch.__dict__ for batch in batches]))
if axis == 0:
return cls(batches)
else:
batch = Batch()
for k, v in zip(batches[0].keys(),
zip(*[e.values() for e in batches])):
if isinstance(v[0], (np.generic, np.ndarray, list)):
batch[k] = np.stack(v, axis)
elif isinstance(v[0], torch.Tensor):
batch[k] = torch.stack(v, axis)
elif isinstance(v[0], Batch):
batch[k] = Batch.stack(v, axis)
else:
s = 'No support for method "stack" with type '\
f'{type(v[0])} in class Batch and axis != 0.'
raise TypeError(s)
return batch
def __len__(self) -> int:
"""Return len(self)."""
r = []
for v in self.__dict__.values():
for v in self.values():
if isinstance(v, Batch) and v.size == 0:
continue
elif isinstance(v, list) and len(v) == 0:
@ -373,11 +431,11 @@ class Batch:
@property
def size(self) -> int:
"""Return self.size."""
if len(self.__dict__) == 0:
if len(self.keys()) == 0:
return 0
else:
r = []
for v in self.__dict__.values():
for v in self.values():
if isinstance(v, Batch):
r.append(v.size)
elif hasattr(v, '__len__') and (not isinstance(

View File

@ -1,11 +1,11 @@
import pprint
import numpy as np
from numbers import Number
from typing import Any, Tuple, Union, Optional
from tianshou.data.batch import Batch
from .batch import Batch
class ReplayBuffer:
class ReplayBuffer(Batch):
""":class:`~tianshou.data.ReplayBuffer` stores data generated from
interaction between the policy and environment. It stores basically 7 types
of data, as mentioned in :class:`~tianshou.data.Batch`, based on
@ -96,81 +96,47 @@ class ReplayBuffer:
def __init__(self, size: int, stack_num: Optional[int] = 0,
ignore_obs_next: bool = False, **kwargs) -> None:
self._maxsize = size
self._stack = stack_num
self._save_s_ = not ignore_obs_next
self._meta = {}
super().__init__()
self.__dict__['_maxsize'] = size
self.__dict__['_stack'] = stack_num
self.__dict__['_save_s_'] = not ignore_obs_next
self.__dict__['_index'] = 0
self.__dict__['_size'] = 0
self.reset()
def __len__(self) -> int:
"""Return len(self)."""
return self._size
def __repr__(self) -> str:
"""Return str(self)."""
s = self.__class__.__name__ + '(\n'
flag = False
for k in sorted(list(self.__dict__) + list(self._meta)):
if k[0] != '_' and (self.__dict__.get(k, None) is not None or
k in self._meta):
rpl = '\n' + ' ' * (6 + len(k))
obj = pprint.pformat(self.__getattr__(k)).replace('\n', rpl)
s += f' {k}: {obj},\n'
flag = True
if flag:
s += ')'
else:
s = self.__class__.__name__ + '()'
return s
def __getattr__(self, key: str) -> Union[Batch, np.ndarray]:
"""Return self.key"""
if key not in self._meta:
if key not in self.__dict__:
raise AttributeError(key)
return self.__dict__[key]
d = {}
for k_ in self._meta[key]:
k__ = '_' + key + '@' + k_
if k__ in self.__dict__:
d[k_] = self.__dict__[k__]
else:
d[k_] = self.__getattr__(k__)
return Batch(d)
def _add_to_buffer(self, name: str, inst: Any) -> None:
if inst is None:
if getattr(self, name, None) is None:
self.__dict__[name] = None
return
if name in self._meta:
for k in inst.keys():
self._add_to_buffer('_' + name + '@' + k, inst[k])
return
if self.__dict__.get(name, None) is None:
def _create_value(inst: Any) -> Union['Batch', np.ndarray]:
if isinstance(inst, np.ndarray):
self.__dict__[name] = np.zeros(
return np.zeros(
(self._maxsize, *inst.shape), dtype=inst.dtype)
elif isinstance(inst, (dict, Batch)):
if self._meta.get(name, None) is None:
self._meta[name] = list(inst.keys())
for k in inst.keys():
k_ = '_' + name + '@' + k
self._add_to_buffer(k_, inst[k])
elif np.isscalar(inst):
self.__dict__[name] = np.zeros(
return Batch([Batch(inst) for _ in range(self._maxsize)])
elif isinstance(inst, (np.generic, Number)):
return np.zeros(
(self._maxsize,), dtype=np.asarray(inst).dtype)
else: # fall back to np.object
self.__dict__[name] = np.array(
[None for _ in range(self._maxsize)])
return np.array([None for _ in range(self._maxsize)])
if inst is None:
inst = Batch()
if name not in self.keys():
self[name] = _create_value(inst)
if isinstance(inst, np.ndarray) and \
self.__dict__[name].shape[1:] != inst.shape:
self[name].shape[1:] != inst.shape:
raise ValueError(
"Cannot add data to a buffer with different shape, "
f"key: {name}, expect shape: {self.__dict__[name].shape[1:]}, "
f"given shape: {inst.shape}.")
if name not in self._meta:
self.__dict__[name][self._index] = inst
f"key: {name}, expect shape: {self[name].shape[1:]}"
f", given shape: {inst.shape}.")
if isinstance(self[name], Batch):
field_keys = self[name].keys()
for key, val in inst.items():
if key not in field_keys:
self[name][key] = _create_value(val)
self[name][self._index] = inst
def update(self, buffer: 'ReplayBuffer') -> None:
"""Move the data from the given buffer to self."""
@ -209,7 +175,8 @@ class ReplayBuffer:
def reset(self) -> None:
"""Clear all the data in replay buffer."""
self._index = self._size = 0
self._index = 0
self._size = 0
def sample(self, batch_size: int) -> Tuple[Batch, np.ndarray]:
"""Get a random sample from buffer with size equal to batch_size. \
@ -226,7 +193,7 @@ class ReplayBuffer:
])
return self[indice], indice
def get(self, indice: Union[slice, np.ndarray], key: str,
def get(self, indice: Union[slice, int, np.integer, np.ndarray], key: str,
stack_num: Optional[int] = None) -> Union[Batch, np.ndarray]:
"""Return the stacked result, e.g. [s_{t-3}, s_{t-2}, s_{t-1}, s_t],
where s is self.key, t is indice. The stack_num (here equals to 4) is
@ -234,20 +201,16 @@ class ReplayBuffer:
"""
if stack_num is None:
stack_num = self._stack
if not isinstance(indice, np.ndarray):
if np.isscalar(indice):
indice = np.array(indice)
elif isinstance(indice, slice):
indice = np.arange(
0 if indice.start is None
else self._size - indice.start if indice.start < 0
else indice.start,
self._size if indice.stop is None
else self._size - indice.stop if indice.stop < 0
else indice.stop,
1 if indice.step is None else indice.step)
else:
indice = np.array(indice)
if isinstance(indice, slice):
indice = np.arange(
0 if indice.start is None
else self._size - indice.start if indice.start < 0
else indice.start,
self._size if indice.stop is None
else self._size - indice.stop if indice.stop < 0
else indice.stop,
1 if indice.step is None else indice.step)
indice = np.array(indice, copy=True)
# set last frame done to True
last_index = (self._index - 1 + self._size) % self._size
last_done, self.done[last_index] = self.done[last_index], True
@ -257,49 +220,51 @@ class ReplayBuffer:
key = 'obs'
if stack_num == 0:
self.done[last_index] = last_done
if key in self._meta:
return {k: self.__dict__['_' + key + '@' + k][indice]
for k in self._meta[key]}
val = self[key]
if isinstance(val, Batch) and val.size == 0:
return val
else:
return self.__dict__[key][indice]
if key in self._meta:
many_keys = self._meta[key]
stack = {k: [] for k in self._meta[key]}
if isinstance(indice, (int, np.integer)) or \
(isinstance(indice, np.ndarray) and
indice.ndim == 0) or not isinstance(val, list):
return val[indice]
else:
return [val[i] for i in indice]
else:
stack = []
many_keys = None
for _ in range(stack_num):
if many_keys is not None:
for k_ in many_keys:
k__ = '_' + key + '@' + k_
stack[k_] = [self.__dict__[k__][indice]] + stack[k_]
val = self[key]
if not isinstance(val, Batch) or val.size > 0:
stack = []
for _ in range(stack_num):
stack = [val[indice]] + stack
pre_indice = np.asarray(indice - 1)
pre_indice[pre_indice == -1] = self._size - 1
indice = np.asarray(
pre_indice + self.done[pre_indice].astype(np.int))
indice[indice == self._size] = 0
if isinstance(stack[0], Batch):
stack = Batch.stack(stack, axis=indice.ndim)
else:
stack = np.stack(stack, axis=indice.ndim)
else:
stack = [self.__dict__[key][indice]] + stack
pre_indice = indice - 1
pre_indice[pre_indice == -1] = self._size - 1
indice = pre_indice + self.done[pre_indice].astype(np.int)
indice[indice == self._size] = 0
self.done[last_index] = last_done
if many_keys is not None:
for k in stack:
stack[k] = np.stack(stack[k], axis=1)
stack = Batch(stack)
else:
stack = np.stack(stack, axis=1)
return stack
stack = Batch()
self.done[last_index] = last_done
return stack
def __getitem__(self, index: Union[slice, np.ndarray]) -> Batch:
def __getitem__(self, index: Union[
slice, int, np.integer, np.ndarray]) -> Batch:
"""Return a data batch: self[index]. If stack_num is set to be > 0,
return the stacked obs and obs_next with shape [batch, len, ...].
"""
if isinstance(index, str):
return getattr(self, index)
return Batch(
obs=self.get(index, 'obs'),
act=self.act[index],
act=self.get(index, 'act', stack_num=0),
# act_=self.get(index, 'act'), # stacked action, for RNN
rew=self.rew[index],
done=self.done[index],
rew=self.get(index, 'rew', stack_num=0),
done=self.get(index, 'done', stack_num=0),
obs_next=self.get(index, 'obs_next'),
info=self.get(index, 'info'),
info=self.get(index, 'info', stack_num=0),
policy=self.get(index, 'policy'),
)
@ -323,15 +288,15 @@ class ListReplayBuffer(ReplayBuffer):
inst: Union[dict, Batch, np.ndarray, float, int, bool]) -> None:
if inst is None:
return
if self.__dict__.get(name, None) is None:
self.__dict__[name] = []
self.__dict__[name].append(inst)
if self._data.get(name, None) is None:
self._data[name] = []
self._data[name].append(inst)
def reset(self) -> None:
self._index = self._size = 0
for k in list(self.__dict__):
if isinstance(self.__dict__[k], list):
self.__dict__[k] = []
for k in list(self._data):
if isinstance(self._data[k], list):
self._data[k] = []
class PrioritizedReplayBuffer(ReplayBuffer):
@ -449,16 +414,18 @@ class PrioritizedReplayBuffer(ReplayBuffer):
- self.weight[indice].sum()
self.weight[indice] = np.power(np.abs(new_weight), self._alpha)
def __getitem__(self, index: Union[slice, np.ndarray]) -> Batch:
def __getitem__(self, index: Union[str, slice, np.ndarray]) -> Batch:
if isinstance(index, str):
return getattr(self, index)
return Batch(
obs=self.get(index, 'obs'),
act=self.act[index],
act=self.get(index, 'act', stack_num=0),
# act_=self.get(index, 'act'), # stacked action, for RNN
rew=self.rew[index],
done=self.done[index],
rew=self.get(index, 'rew', stack_num=0),
done=self.get(index, 'done', stack_num=0),
obs_next=self.get(index, 'obs_next'),
info=self.get(index, 'info'),
weight=self.weight[index],
weight=self.get(index, 'weight', stack_num=0),
policy=self.get(index, 'policy'),
)