mcts update

This commit is contained in:
rtz19970824 2017-11-21 22:19:52 +08:00
parent 1e07cb1fac
commit 31beb46563
3 changed files with 90 additions and 68 deletions

View File

@ -1,5 +1,6 @@
import numpy as np
class evaluator(object):
def __init__(self, env, action_num):
self.env = env
@ -8,6 +9,7 @@ class evaluator(object):
def __call__(self, state):
raise NotImplementedError("Need to implement the evaluator")
class rollout_policy(evaluator):
def __init__(self, env, action_num):
super(rollout_policy, self).__init__(env, action_num)
@ -15,6 +17,11 @@ class rollout_policy(evaluator):
def __call__(self, state):
# TODO: prior for rollout policy
while not self.is_terminated:
action = np.random.randint(0,self.action_num)
state, is_terminated = self.env.step_forward(state, action)
total_reward = 0
action = np.random.randint(0, self.action_num)
state, reward = self.env.step_forward(state, action)
while state is not None:
action = np.random.randint(0, self.action_num)
state, reward = self.env.step_forward(state, action)
total_reward += reward
return reward

View File

@ -2,7 +2,7 @@ import numpy as np
import math
import time
c_puct = 1
c_puct = 5
class MCTSNode(object):
@ -14,15 +14,12 @@ class MCTSNode(object):
self.action_num = action_num
self.prior = prior
def selection(self):
def selection(self, simulator):
raise NotImplementedError("Need to implement function selection")
def backpropagation(self, action, value):
def backpropagation(self, action):
raise NotImplementedError("Need to implement function backpropagation")
def expansion(self, simulator, action):
raise NotImplementedError("Need to implement function expansion")
def simulation(self, state, evaluator):
raise NotImplementedError("Need to implement function simulation")
@ -34,40 +31,24 @@ class UCTNode(MCTSNode):
self.W = np.zeros([action_num])
self.N = np.zeros([action_num])
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
self.is_terminated = False
def selection(self):
if not self.is_terminated:
action = np.argmax(self.ucb)
if action in self.children.keys():
node, action = self.children[action].selection()
else:
node = self
def selection(self, simulator):
action = np.argmax(self.ucb)
if action in self.children.keys():
return self.children[action].selection(simulator)
else:
action = None
node = self
return node, action
self.children[action] = ActionNode(self, action)
return self.children[action].selection(simulator)
def backpropagation(self, action, value):
if action is None:
if self.parent is not None:
self.parent.backpropagation(self.action, value)
else:
self.N[action] += 1
self.W[action] += value
for i in range(self.action_num):
if self.N[i] != 0:
self.Q[i] = (self.W[i] + 0.)/self.N[i]
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1.)
if self.parent is not None:
self.parent.backpropagation(self.action, value)
def expansion(self, simulator, action):
next_state, is_terminated = simulator.step_forward(self.state, action)
# TODO: Let users/evaluator give the prior
prior = np.ones([self.action_num]) / self.action_num
self.children[action] = UCTNode(self, action, next_state, self.action_num, prior)
self.children[action].is_terminated = is_terminated
def backpropagation(self, action):
self.N[action] += 1
self.W[action] += self.children[action].reward
for i in range(self.action_num):
if self.N[i] != 0:
self.Q[i] = (self.W[i] + 0.) / self.N[i]
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1.)
if self.parent is not None:
self.parent.backpropagation(self.children[action].reward)
def simulation(self, evaluator, state):
value = evaluator(state)
@ -90,13 +71,38 @@ class ActionNode:
self.parent = parent
self.action = action
self.children = {}
self.value = {}
self.next_state = None
self.reward = 0
def selection(self, simulator):
self.next_state, self.reward = simulator.step_forward(self.parent.state, self.action)
if self.next_state is not None:
if self.next_state in self.children.keys():
return self.children[self.next_state].selection(simulator)
else:
return self.parent, self.action
else:
return self.parent, self.action
def expansion(self, action_num):
# TODO: Let users/evaluator give the prior
if self.next_state is not None:
prior = np.ones([action_num]) / action_num
self.children[self.next_state] = UCTNode(self.parent, self.action, self.next_state, action_num, prior)
return True
else:
return False
def backpropagation(self, value):
self.reward += value
self.parent.backpropagation(self.action)
class MCTS:
def __init__(self, simulator, evaluator, root, action_num, prior, method="UCT", max_step=None, max_time=None):
self.simulator = simulator
self.evaluator = evaluator
self.action_num = action_num
if method == "UCT":
self.root = UCTNode(None, None, root, action_num, prior)
if method == "TS":
@ -111,21 +117,25 @@ class MCTS:
raise ValueError("Need a stop criteria!")
while (max_step is not None and self.step < self.max_step or max_step is None) \
and (max_time is not None and time.time() - self.start_time < self.max_time or max_time is None):
print(self.root.Q)
print("Q={}".format(self.root.Q))
print("N={}".format(self.root.N))
print("W={}".format(self.root.W))
print("UCB={}".format(self.root.ucb))
print("\n")
self.expand()
if max_step is not None:
self.step += 1
def expand(self):
node, new_action = self.root.selection()
if new_action is None:
value = node.simulation(self.evaluator, node.state)
node.backpropagation(new_action, value)
node, new_action = self.root.selection(self.simulator)
success = node.children[new_action].expansion(self.action_num)
if success:
value = node.simulation(self.evaluator, node.children[new_action].next_state)
node.children[new_action].backpropagation(value + 0.)
else:
node.expansion(self.simulator, new_action)
value = node.simulation(self.evaluator, node.children[new_action].state)
node.backpropagation(new_action, value)
value = node.simulation(self.evaluator, node.state)
node.parent.children[node.action].backpropagation(value + 0.)
if __name__=="__main__":
pass
if __name__ == "__main__":
pass

View File

@ -1,34 +1,39 @@
import numpy as np
from mcts import MCTS
import matplotlib.pyplot as plt
from evaluator import rollout_policy
class TestEnv:
def __init__(self, max_step=5):
self.max_step = max_step
self.reward = {i:np.random.uniform() for i in range(2**max_step)}
self.reward = {i: np.random.uniform() for i in range(2 ** max_step)}
# self.reward = {0:0.8, 1:0.2, 2:0.4, 3:0.6}
self.best = max(self.reward.items(), key=lambda x:x[1])
self.best = max(self.reward.items(), key=lambda x: x[1])
# print("The best arm is {} with expected reward {}".format(self.best[0],self.best[1]))
print(self.reward)
def step_forward(self, state, action):
if action != 0 and action != 1:
raise ValueError("Action must be 0 or 1! Your action is {}".format(action))
if state[0] >= 2**state[1] or state[1] >= self.max_step:
if state[0] >= 2 ** state[1] or state[1] > self.max_step:
raise ValueError("Invalid State! Your state is {}".format(state))
# print("Operate action {} at state {}, timestep {}".format(action, state[0], state[1]))
new_state = [0,0]
new_state[0] = state[0] + 2**state[1]*action
new_state[1] = state[1] + 1
if new_state[1] == self.max_step:
reward = int(np.random.uniform() < self.reward[state[0]])
is_terminated = True
else:
if state[1] == self.max_step:
new_state = None
reward = 0
is_terminated = False
return new_state, reward, is_terminated
else:
num = state[0] + 2 ** state[1] * action
step = state[1] + 1
new_state = (num, step)
if step == self.max_step:
reward = int(np.random.uniform() < self.reward[state[0]])
else:
reward = 0
return new_state, reward
if __name__=="__main__":
env = TestEnv(3)
evaluator = lambda state: env.step_forward(state, action)
mcts = MCTS(env, evaluator, [0,0], 2, np.array([0.5,0.5]), max_step=1e4)
if __name__ == "__main__":
env = TestEnv(1)
rollout = rollout_policy(env, 2)
evaluator = lambda state: rollout(state)
mcts = MCTS(env, evaluator, [0, 0], 2, np.array([0.5, 0.5]), max_step=1e4)