refactor A2C/PPO, change behavior of value normalization (#321)

This commit is contained in:
ChenDRAG 2021-03-25 10:12:39 +08:00 committed by GitHub
parent 47c77899d5
commit 3ac67d9974
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 79 additions and 69 deletions

View File

@ -43,7 +43,7 @@ This will start 10 experiments with different seeds.
#### Example benchmark
<img src="./benchmark/Ant-v3/figure.png" width="500" height="450">
<img src="./benchmark/Ant-v3/offpolicy.png" width="500" height="450">
Other graphs can be found under `/examples/mujuco/benchmark/`

View File

@ -20,22 +20,22 @@ def get_args():
parser.add_argument('--task', type=str, default='CartPole-v0')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--il-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=50000)
parser.add_argument('--il-step-per-epoch', type=int, default=1000)
parser.add_argument('--episode-per-collect', type=int, default=8)
parser.add_argument('--step-per-collect', type=int, default=8)
parser.add_argument('--update-per-step', type=float, default=0.125)
parser.add_argument('--episode-per-collect', type=int, default=16)
parser.add_argument('--step-per-collect', type=int, default=16)
parser.add_argument('--update-per-step', type=float, default=1 / 16)
parser.add_argument('--repeat-per-collect', type=int, default=1)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--hidden-sizes', type=int,
nargs='*', default=[128, 128, 128])
nargs='*', default=[64, 64])
parser.add_argument('--imitation-hidden-sizes', type=int,
nargs='*', default=[128])
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--training-num', type=int, default=16)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)

View File

@ -5,7 +5,7 @@ import torch.nn.functional as F
from typing import Any, Dict, List, Type, Optional
from tianshou.policy import PGPolicy
from tianshou.data import Batch, ReplayBuffer, to_torch_as, to_numpy
from tianshou.data import Batch, ReplayBuffer, to_numpy, to_torch_as
class A2CPolicy(PGPolicy):
@ -21,12 +21,12 @@ class A2CPolicy(PGPolicy):
:param float discount_factor: in [0, 1]. Default to 0.99.
:param float vf_coef: weight for value loss. Default to 0.5.
:param float ent_coef: weight for entropy loss. Default to 0.01.
:param float max_grad_norm: clipping gradients in back propagation.
Default to None.
:param float gae_lambda: in [0, 1], param for Generalized Advantage
Estimation. Default to 0.95.
:param bool reward_normalization: normalize the reward to Normal(0, 1).
Default to False.
:param float max_grad_norm: clipping gradients in back propagation. Default to
None.
:param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation.
Default to 0.95.
:param bool reward_normalization: normalize estimated values to have std close to
1. Default to False.
:param int max_batchsize: the maximum size of the batch when computing GAE,
depends on the size of available memory and the memory cost of the
model; should be as large as possible within the memory constraint.
@ -72,22 +72,33 @@ class A2CPolicy(PGPolicy):
def process_fn(
self, batch: Batch, buffer: ReplayBuffer, indice: np.ndarray
) -> Batch:
v_s_ = []
v_s, v_s_ = [], []
with torch.no_grad():
for b in batch.split(self._batch, shuffle=False, merge_last=True):
v_s_.append(to_numpy(self.critic(b.obs_next)))
v_s_ = np.concatenate(v_s_, axis=0)
if self._rew_norm: # unnormalize v_s_
v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps) + self.ret_rms.mean
unnormalized_returns, _ = self.compute_episodic_return(
batch, buffer, indice, v_s_=v_s_,
v_s.append(self.critic(b.obs))
v_s_.append(self.critic(b.obs_next))
batch.v_s = torch.cat(v_s, dim=0).flatten() # old value
v_s = to_numpy(batch.v_s)
v_s_ = to_numpy(torch.cat(v_s_, dim=0).flatten())
# when normalizing values, we do not minus self.ret_rms.mean to be numerically
# consistent with OPENAI baselines' value normalization pipeline. Emperical
# study also shows that "minus mean" will harm performances a tiny little bit
# due to unknown reasons (on Mujoco envs, not confident, though).
if self._rew_norm: # unnormalize v_s & v_s_
v_s = v_s * np.sqrt(self.ret_rms.var + self._eps)
v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps)
unnormalized_returns, advantages = self.compute_episodic_return(
batch, buffer, indice, v_s_, v_s,
gamma=self._gamma, gae_lambda=self._lambda)
if self._rew_norm:
batch.returns = (unnormalized_returns - self.ret_rms.mean) / \
batch.returns = unnormalized_returns / \
np.sqrt(self.ret_rms.var + self._eps)
self.ret_rms.update(unnormalized_returns)
else:
batch.returns = unnormalized_returns
batch.act = to_torch_as(batch.act, batch.v_s)
batch.returns = to_torch_as(batch.returns, batch.v_s)
batch.adv = to_torch_as(advantages, batch.v_s)
return batch
def learn( # type: ignore
@ -96,24 +107,25 @@ class A2CPolicy(PGPolicy):
losses, actor_losses, vf_losses, ent_losses = [], [], [], []
for _ in range(repeat):
for b in batch.split(batch_size, merge_last=True):
self.optim.zero_grad()
# calculate loss for actor
dist = self(b).dist
v = self.critic(b.obs).flatten()
a = to_torch_as(b.act, v)
r = to_torch_as(b.returns, v)
log_prob = dist.log_prob(a).reshape(len(r), -1).transpose(0, 1)
a_loss = -(log_prob * (r - v).detach()).mean()
vf_loss = F.mse_loss(r, v) # type: ignore
log_prob = dist.log_prob(b.act).reshape(len(b.adv), -1).transpose(0, 1)
actor_loss = -(log_prob * b.adv).mean()
# calculate loss for critic
value = self.critic(b.obs).flatten()
vf_loss = F.mse_loss(b.returns, value)
# calculate regularization and overall loss
ent_loss = dist.entropy().mean()
loss = a_loss + self._weight_vf * vf_loss - self._weight_ent * ent_loss
loss = actor_loss + self._weight_vf * vf_loss \
- self._weight_ent * ent_loss
self.optim.zero_grad()
loss.backward()
if self._grad_norm is not None:
if self._grad_norm is not None: # clip large gradient
nn.utils.clip_grad_norm_(
list(self.actor.parameters()) + list(self.critic.parameters()),
max_norm=self._grad_norm,
)
max_norm=self._grad_norm)
self.optim.step()
actor_losses.append(a_loss.item())
actor_losses.append(actor_loss.item())
vf_losses.append(vf_loss.item())
ent_losses.append(ent_loss.item())
losses.append(loss.item())

View File

@ -116,9 +116,9 @@ class PGPolicy(BasePolicy):
result = self(b)
dist = result.dist
a = to_torch_as(b.act, result.act)
r = to_torch_as(b.returns, result.act)
log_prob = dist.log_prob(a).reshape(len(r), -1).transpose(0, 1)
loss = -(log_prob * r).mean()
ret = to_torch_as(b.returns, result.act)
log_prob = dist.log_prob(a).reshape(len(ret), -1).transpose(0, 1)
loss = -(log_prob * ret).mean()
loss.backward()
self.optim.step()
losses.append(loss.item())

View File

@ -17,25 +17,24 @@ class PPOPolicy(A2CPolicy):
:param dist_fn: distribution class for computing the action.
:type dist_fn: Type[torch.distributions.Distribution]
:param float discount_factor: in [0, 1]. Default to 0.99.
:param float max_grad_norm: clipping gradients in back propagation.
Default to None.
:param float eps_clip: :math:`\epsilon` in :math:`L_{CLIP}` in the original
paper. Default to 0.2.
:param float vf_coef: weight for value loss. Default to 0.5.
:param float ent_coef: weight for entropy loss. Default to 0.01.
:param float gae_lambda: in [0, 1], param for Generalized Advantage
Estimation. Default to 0.95.
:param float dual_clip: a parameter c mentioned in arXiv:1912.09729 Equ. 5,
where c > 1 is a constant indicating the lower bound.
Default to 5.0 (set None if you do not want to use it).
:param bool value_clip: a parameter mentioned in arXiv:1811.02553 Sec. 4.1.
Default to True.
:param bool reward_normalization: normalize the returns and advantage to
Normal(0, 1). Default to False.
:param float vf_coef: weight for value loss. Default to 0.5.
:param float ent_coef: weight for entropy loss. Default to 0.01.
:param float max_grad_norm: clipping gradients in back propagation. Default to
None.
:param float gae_lambda: in [0, 1], param for Generalized Advantage Estimation.
Default to 0.95.
:param bool reward_normalization: normalize estimated values to have std close
to 1, also normalize the advantage to Normal(0, 1). Default to False.
:param int max_batchsize: the maximum size of the batch when computing GAE,
depends on the size of available memory and the memory cost of the
model; should be as large as possible within the memory constraint.
Default to 256.
depends on the size of available memory and the memory cost of the model;
should be as large as possible within the memory constraint. Default to 256.
:param bool action_scaling: whether to map actions from range [-1, 1] to range
[action_spaces.low, action_spaces.high]. Default to True.
:param str action_bound_method: method to bound action to range [-1, 1], can be
@ -58,20 +57,12 @@ class PPOPolicy(A2CPolicy):
critic: torch.nn.Module,
optim: torch.optim.Optimizer,
dist_fn: Type[torch.distributions.Distribution],
max_grad_norm: Optional[float] = None,
eps_clip: float = 0.2,
vf_coef: float = 0.5,
ent_coef: float = 0.01,
gae_lambda: float = 0.95,
dual_clip: Optional[float] = None,
value_clip: bool = True,
max_batchsize: int = 256,
**kwargs: Any,
) -> None:
super().__init__(
actor, critic, optim, dist_fn, max_grad_norm=max_grad_norm,
vf_coef=vf_coef, ent_coef=ent_coef, gae_lambda=gae_lambda,
max_batchsize=max_batchsize, **kwargs)
super().__init__(actor, critic, optim, dist_fn, **kwargs)
self._eps_clip = eps_clip
assert dual_clip is None or dual_clip > 1.0, \
"Dual-clip PPO parameter should greater than 1.0."
@ -90,14 +81,18 @@ class PPOPolicy(A2CPolicy):
batch.v_s = torch.cat(v_s, dim=0).flatten() # old value
v_s = to_numpy(batch.v_s)
v_s_ = to_numpy(torch.cat(v_s_, dim=0).flatten())
# when normalizing values, we do not minus self.ret_rms.mean to be numerically
# consistent with OPENAI baselines' value normalization pipeline. Emperical
# study also shows that "minus mean" will harm performances a tiny little bit
# due to unknown reasons (on Mujoco envs, not confident, though).
if self._rew_norm: # unnormalize v_s & v_s_
v_s = v_s * np.sqrt(self.ret_rms.var + self._eps) + self.ret_rms.mean
v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps) + self.ret_rms.mean
v_s = v_s * np.sqrt(self.ret_rms.var + self._eps)
v_s_ = v_s_ * np.sqrt(self.ret_rms.var + self._eps)
unnormalized_returns, advantages = self.compute_episodic_return(
batch, buffer, indice, v_s_, v_s,
gamma=self._gamma, gae_lambda=self._lambda)
if self._rew_norm:
batch.returns = (unnormalized_returns - self.ret_rms.mean) / \
batch.returns = unnormalized_returns / \
np.sqrt(self.ret_rms.var + self._eps)
self.ret_rms.update(unnormalized_returns)
mean, std = np.mean(advantages), np.std(advantages)
@ -116,8 +111,8 @@ class PPOPolicy(A2CPolicy):
losses, clip_losses, vf_losses, ent_losses = [], [], [], []
for _ in range(repeat):
for b in batch.split(batch_size, merge_last=True):
# calculate loss for actor
dist = self(b).dist
value = self.critic(b.obs).flatten()
ratio = (dist.log_prob(b.act) - b.logp_old).exp().float()
ratio = ratio.reshape(ratio.size(0), -1).transpose(0, 1)
surr1 = ratio * b.adv
@ -128,7 +123,8 @@ class PPOPolicy(A2CPolicy):
).mean()
else:
clip_loss = -torch.min(surr1, surr2).mean()
clip_losses.append(clip_loss.item())
# calculate loss for critic
value = self.critic(b.obs).flatten()
if self._value_clip:
v_clip = b.v_s + (value - b.v_s).clamp(
-self._eps_clip, self._eps_clip)
@ -137,19 +133,21 @@ class PPOPolicy(A2CPolicy):
vf_loss = 0.5 * torch.max(vf1, vf2).mean()
else:
vf_loss = 0.5 * (b.returns - value).pow(2).mean()
vf_losses.append(vf_loss.item())
e_loss = dist.entropy().mean()
ent_losses.append(e_loss.item())
# calculate regularization and overall loss
ent_loss = dist.entropy().mean()
loss = clip_loss + self._weight_vf * vf_loss \
- self._weight_ent * e_loss
losses.append(loss.item())
- self._weight_ent * ent_loss
self.optim.zero_grad()
loss.backward()
if self._grad_norm is not None:
if self._grad_norm is not None: # clip large gradient
nn.utils.clip_grad_norm_(
list(self.actor.parameters()) + list(self.critic.parameters()),
self._grad_norm)
max_norm=self._grad_norm)
self.optim.step()
clip_losses.append(clip_loss.item())
vf_losses.append(vf_loss.item())
ent_losses.append(ent_loss.item())
losses.append(loss.item())
# update learning rate if lr_scheduler is given
if self.lr_scheduler is not None:
self.lr_scheduler.step()