Unify PPO configuration objects, use experiment-specific configuration
in mujoco_ppo_hl
This commit is contained in:
parent
8ec42009cb
commit
3fd60f9e70
@ -3,8 +3,8 @@ import warnings
|
||||
import gymnasium as gym
|
||||
|
||||
from tianshou.env import ShmemVectorEnv, VectorEnvNormObs
|
||||
from tianshou.highlevel.env import ContinuousEnvironments, EnvFactory
|
||||
from tianshou.highlevel.config import RLSamplingConfig
|
||||
from tianshou.highlevel.env import ContinuousEnvironments, EnvFactory
|
||||
|
||||
try:
|
||||
import envpool
|
||||
|
@ -3,18 +3,18 @@
|
||||
import datetime
|
||||
import os
|
||||
from collections.abc import Sequence
|
||||
from dataclasses import dataclass
|
||||
from typing import Literal
|
||||
|
||||
from jsonargparse import CLI
|
||||
from torch.distributions import Independent, Normal
|
||||
|
||||
from examples.mujoco.mujoco_env import MujocoEnvFactory
|
||||
from tianshou.highlevel.agent import PGConfig, PPOAgentFactory, PPOConfig, RLAgentConfig
|
||||
from tianshou.highlevel.agent import PPOAgentFactory, PPOConfig
|
||||
from tianshou.highlevel.config import RLSamplingConfig
|
||||
from tianshou.highlevel.experiment import (
|
||||
RLExperiment,
|
||||
RLExperimentConfig,
|
||||
)
|
||||
from tianshou.highlevel.config import RLSamplingConfig
|
||||
from tianshou.highlevel.logger import DefaultLoggerFactory
|
||||
from tianshou.highlevel.module import (
|
||||
ContinuousActorProbFactory,
|
||||
@ -23,45 +23,79 @@ from tianshou.highlevel.module import (
|
||||
from tianshou.highlevel.optim import AdamOptimizerFactory, LinearLRSchedulerFactory
|
||||
|
||||
|
||||
@dataclass
|
||||
class NNConfig:
|
||||
hidden_sizes: Sequence[int] = (64, 64)
|
||||
lr: float = 3e-4
|
||||
lr_decay: bool = True
|
||||
|
||||
|
||||
def main(
|
||||
experiment_config: RLExperimentConfig,
|
||||
sampling_config: RLSamplingConfig,
|
||||
general_config: RLAgentConfig,
|
||||
pg_config: PGConfig,
|
||||
ppo_config: PPOConfig,
|
||||
nn_config: NNConfig,
|
||||
task: str = "Ant-v4",
|
||||
buffer_size: int = 4096,
|
||||
hidden_sizes: Sequence[int] = (64, 64),
|
||||
lr: float = 3e-4,
|
||||
gamma: float = 0.99,
|
||||
epoch: int = 100,
|
||||
step_per_epoch: int = 30000,
|
||||
step_per_collect: int = 2048,
|
||||
repeat_per_collect: int = 10,
|
||||
batch_size: int = 64,
|
||||
training_num: int = 64,
|
||||
test_num: int = 10,
|
||||
rew_norm: bool = True,
|
||||
vf_coef: float = 0.25,
|
||||
ent_coef: float = 0.0,
|
||||
gae_lambda: float = 0.95,
|
||||
bound_action_method: Literal["clip", "tanh"] | None = "clip",
|
||||
lr_decay: bool = True,
|
||||
max_grad_norm: float = 0.5,
|
||||
eps_clip: float = 0.2,
|
||||
dual_clip: float | None = None,
|
||||
value_clip: bool = False,
|
||||
norm_adv: bool = False,
|
||||
recompute_adv: bool = True,
|
||||
):
|
||||
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
|
||||
log_name = os.path.join(task, "ppo", str(experiment_config.seed), now)
|
||||
logger_factory = DefaultLoggerFactory()
|
||||
|
||||
sampling_config = RLSamplingConfig(
|
||||
num_epochs=epoch,
|
||||
step_per_epoch=step_per_epoch,
|
||||
batch_size=batch_size,
|
||||
num_train_envs=training_num,
|
||||
num_test_envs=test_num,
|
||||
buffer_size=buffer_size,
|
||||
step_per_collect=step_per_collect,
|
||||
repeat_per_collect=repeat_per_collect,
|
||||
)
|
||||
|
||||
env_factory = MujocoEnvFactory(task, experiment_config.seed, sampling_config)
|
||||
|
||||
def dist_fn(*logits):
|
||||
return Independent(Normal(*logits), 1)
|
||||
|
||||
actor_factory = ContinuousActorProbFactory(nn_config.hidden_sizes)
|
||||
critic_factory = ContinuousNetCriticFactory(nn_config.hidden_sizes)
|
||||
ppo_config = PPOConfig(
|
||||
gamma=gamma,
|
||||
gae_lambda=gae_lambda,
|
||||
action_bound_method=bound_action_method,
|
||||
rew_norm=rew_norm,
|
||||
ent_coef=ent_coef,
|
||||
vf_coef=vf_coef,
|
||||
max_grad_norm=max_grad_norm,
|
||||
value_clip=value_clip,
|
||||
norm_adv=norm_adv,
|
||||
eps_clip=eps_clip,
|
||||
dual_clip=dual_clip,
|
||||
recompute_adv=recompute_adv,
|
||||
)
|
||||
actor_factory = ContinuousActorProbFactory(hidden_sizes)
|
||||
critic_factory = ContinuousNetCriticFactory(hidden_sizes)
|
||||
optim_factory = AdamOptimizerFactory()
|
||||
lr_scheduler_factory = LinearLRSchedulerFactory(sampling_config) if nn_config.lr_decay else None
|
||||
lr_scheduler_factory = LinearLRSchedulerFactory(sampling_config) if lr_decay else None
|
||||
agent_factory = PPOAgentFactory(
|
||||
general_config,
|
||||
pg_config,
|
||||
ppo_config,
|
||||
sampling_config,
|
||||
actor_factory,
|
||||
critic_factory,
|
||||
optim_factory,
|
||||
dist_fn,
|
||||
nn_config.lr,
|
||||
lr,
|
||||
lr_scheduler_factory,
|
||||
)
|
||||
|
||||
|
@ -8,11 +8,11 @@ from jsonargparse import CLI
|
||||
|
||||
from examples.mujoco.mujoco_env import MujocoEnvFactory
|
||||
from tianshou.highlevel.agent import DefaultAutoAlphaFactory, SACAgentFactory, SACConfig
|
||||
from tianshou.highlevel.config import RLSamplingConfig
|
||||
from tianshou.highlevel.experiment import (
|
||||
RLExperiment,
|
||||
RLExperimentConfig,
|
||||
)
|
||||
from tianshou.highlevel.config import RLSamplingConfig
|
||||
from tianshou.highlevel.logger import DefaultLoggerFactory
|
||||
from tianshou.highlevel.module import (
|
||||
ContinuousActorProbFactory,
|
||||
|
@ -9,8 +9,8 @@ import torch
|
||||
|
||||
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
|
||||
from tianshou.exploration import BaseNoise
|
||||
from tianshou.highlevel.env import Environments
|
||||
from tianshou.highlevel.config import RLSamplingConfig
|
||||
from tianshou.highlevel.env import Environments
|
||||
from tianshou.highlevel.logger import Logger
|
||||
from tianshou.highlevel.module import ActorFactory, CriticFactory, TDevice
|
||||
from tianshou.highlevel.optim import LRSchedulerFactory, OptimizerFactory
|
||||
@ -143,7 +143,7 @@ class RLAgentConfig:
|
||||
|
||||
|
||||
@dataclass
|
||||
class PGConfig:
|
||||
class PGConfig(RLAgentConfig):
|
||||
"""Config of general policy-gradient algorithms."""
|
||||
|
||||
ent_coef: float = 0.0
|
||||
@ -152,7 +152,7 @@ class PGConfig:
|
||||
|
||||
|
||||
@dataclass
|
||||
class PPOConfig:
|
||||
class PPOConfig(PGConfig):
|
||||
"""PPO specific config."""
|
||||
|
||||
value_clip: bool = False
|
||||
@ -166,9 +166,7 @@ class PPOConfig:
|
||||
class PPOAgentFactory(OnpolicyAgentFactory):
|
||||
def __init__(
|
||||
self,
|
||||
general_config: RLAgentConfig,
|
||||
pg_config: PGConfig,
|
||||
ppo_config: PPOConfig,
|
||||
config: PPOConfig,
|
||||
sampling_config: RLSamplingConfig,
|
||||
actor_factory: ActorFactory,
|
||||
critic_factory: CriticFactory,
|
||||
@ -181,9 +179,7 @@ class PPOAgentFactory(OnpolicyAgentFactory):
|
||||
self.optimizer_factory = optimizer_factory
|
||||
self.critic_factory = critic_factory
|
||||
self.actor_factory = actor_factory
|
||||
self.ppo_config = ppo_config
|
||||
self.pg_config = pg_config
|
||||
self.general_config = general_config
|
||||
self.config = config
|
||||
self.lr = lr
|
||||
self.lr_scheduler_factory = lr_scheduler_factory
|
||||
self.dist_fn = dist_fn
|
||||
@ -208,27 +204,30 @@ class PPOAgentFactory(OnpolicyAgentFactory):
|
||||
action_space=envs.get_action_space(),
|
||||
action_scaling=True,
|
||||
# general_config
|
||||
discount_factor=self.general_config.gamma,
|
||||
gae_lambda=self.general_config.gae_lambda,
|
||||
reward_normalization=self.general_config.rew_norm,
|
||||
action_bound_method=self.general_config.action_bound_method,
|
||||
discount_factor=self.config.gamma,
|
||||
gae_lambda=self.config.gae_lambda,
|
||||
reward_normalization=self.config.rew_norm,
|
||||
action_bound_method=self.config.action_bound_method,
|
||||
# pg_config
|
||||
max_grad_norm=self.pg_config.max_grad_norm,
|
||||
vf_coef=self.pg_config.vf_coef,
|
||||
ent_coef=self.pg_config.ent_coef,
|
||||
max_grad_norm=self.config.max_grad_norm,
|
||||
vf_coef=self.config.vf_coef,
|
||||
ent_coef=self.config.ent_coef,
|
||||
# ppo_config
|
||||
eps_clip=self.ppo_config.eps_clip,
|
||||
value_clip=self.ppo_config.value_clip,
|
||||
dual_clip=self.ppo_config.dual_clip,
|
||||
advantage_normalization=self.ppo_config.norm_adv,
|
||||
recompute_advantage=self.ppo_config.recompute_adv,
|
||||
eps_clip=self.config.eps_clip,
|
||||
value_clip=self.config.value_clip,
|
||||
dual_clip=self.config.dual_clip,
|
||||
advantage_normalization=self.config.norm_adv,
|
||||
recompute_advantage=self.config.recompute_adv,
|
||||
)
|
||||
|
||||
|
||||
class AutoAlphaFactory(ABC):
|
||||
@abstractmethod
|
||||
def create_auto_alpha(
|
||||
self, envs: Environments, optim_factory: OptimizerFactory, device: TDevice,
|
||||
self,
|
||||
envs: Environments,
|
||||
optim_factory: OptimizerFactory,
|
||||
device: TDevice,
|
||||
):
|
||||
pass
|
||||
|
||||
@ -238,7 +237,10 @@ class DefaultAutoAlphaFactory(AutoAlphaFactory): # TODO better name?
|
||||
self.lr = lr
|
||||
|
||||
def create_auto_alpha(
|
||||
self, envs: Environments, optim_factory: OptimizerFactory, device: TDevice,
|
||||
self,
|
||||
envs: Environments,
|
||||
optim_factory: OptimizerFactory,
|
||||
device: TDevice,
|
||||
) -> tuple[float, torch.Tensor, torch.optim.Optimizer]:
|
||||
target_entropy = -np.prod(envs.get_action_shape())
|
||||
log_alpha = torch.zeros(1, requires_grad=True, device=device)
|
||||
|
Loading…
x
Reference in New Issue
Block a user