Add atari ppo example (#523)
I needed a policy gradient baseline myself and it has been requested several times (#497, #374, #440). I used https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_atari.py as a reference for hyper-parameters. Note that using lr=2.5e-4 will result in "Invalid Value" error for 2 games. The fix is to reduce the learning rate. That's why I set the default lr to 1e-4. See discussion in https://github.com/DLR-RM/rl-baselines3-zoo/issues/156.
@ -95,3 +95,17 @@ One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
|
||||
| MsPacmanNoFrameskip-v4 | 3101 |  | `python3 atari_rainbow.py --task "MsPacmanNoFrameskip-v4"` |
|
||||
| SeaquestNoFrameskip-v4 | 2126 |  | `python3 atari_rainbow.py --task "SeaquestNoFrameskip-v4"` |
|
||||
| SpaceInvadersNoFrameskip-v4 | 1794.5 |  | `python3 atari_rainbow.py --task "SpaceInvadersNoFrameskip-v4"` |
|
||||
|
||||
# PPO (single run)
|
||||
|
||||
One epoch here is equal to 100,000 env step, 100 epochs stand for 10M.
|
||||
|
||||
| task | best reward | reward curve | parameters |
|
||||
| --------------------------- | ----------- | ------------------------------------- | ------------------------------------------------------------ |
|
||||
| PongNoFrameskip-v4 | 20 |  | `python3 atari_ppo.py --task "PongNoFrameskip-v4"` |
|
||||
| BreakoutNoFrameskip-v4 | 442.1 |  | `python3 atari_ppo.py --task "BreakoutNoFrameskip-v4"` |
|
||||
| EnduroNoFrameskip-v4 | 1386.4 |  | `python3 atari_ppo.py --task "EnduroNoFrameskip-v4"` |
|
||||
| QbertNoFrameskip-v4 | 19585 |  | `python3 atari_ppo.py --task "QbertNoFrameskip-v4"` |
|
||||
| MsPacmanNoFrameskip-v4 | 2319 |  | `python3 atari_ppo.py --task "MsPacmanNoFrameskip-v4"` |
|
||||
| SeaquestNoFrameskip-v4 | 1764 |  | `python3 atari_ppo.py --task "SeaquestNoFrameskip-v4"` |
|
||||
| SpaceInvadersNoFrameskip-v4 | 1184 |  | `python3 atari_ppo.py --task "SpaceInvadersNoFrameskip-v4"` |
|
||||
|
@ -22,6 +22,7 @@ class DQN(nn.Module):
|
||||
action_shape: Sequence[int],
|
||||
device: Union[str, int, torch.device] = "cpu",
|
||||
features_only: bool = False,
|
||||
output_dim: Optional[int] = None,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.device = device
|
||||
@ -39,6 +40,12 @@ class DQN(nn.Module):
|
||||
nn.Linear(512, np.prod(action_shape))
|
||||
)
|
||||
self.output_dim = np.prod(action_shape)
|
||||
elif output_dim is not None:
|
||||
self.net = nn.Sequential(
|
||||
self.net, nn.Linear(self.output_dim, output_dim),
|
||||
nn.ReLU(inplace=True)
|
||||
)
|
||||
self.output_dim = output_dim
|
||||
|
||||
def forward(
|
||||
self,
|
||||
|
297
examples/atari/atari_ppo.py
Normal file
@ -0,0 +1,297 @@
|
||||
import argparse
|
||||
import os
|
||||
import pprint
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from atari_network import DQN
|
||||
from atari_wrapper import wrap_deepmind
|
||||
from torch.optim.lr_scheduler import LambdaLR
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from tianshou.data import Collector, VectorReplayBuffer
|
||||
from tianshou.env import ShmemVectorEnv
|
||||
from tianshou.policy import ICMPolicy, PPOPolicy
|
||||
from tianshou.trainer import onpolicy_trainer
|
||||
from tianshou.utils import TensorboardLogger, WandbLogger
|
||||
from tianshou.utils.net.common import ActorCritic
|
||||
from tianshou.utils.net.discrete import Actor, Critic, IntrinsicCuriosityModule
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--task', type=str, default='PongNoFrameskip-v4')
|
||||
parser.add_argument('--seed', type=int, default=4213)
|
||||
parser.add_argument('--scale-obs', type=int, default=0)
|
||||
parser.add_argument('--buffer-size', type=int, default=100000)
|
||||
parser.add_argument('--lr', type=float, default=1e-4)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--epoch', type=int, default=100)
|
||||
parser.add_argument('--step-per-epoch', type=int, default=100000)
|
||||
parser.add_argument('--step-per-collect', type=int, default=1000)
|
||||
parser.add_argument('--repeat-per-collect', type=int, default=4)
|
||||
parser.add_argument('--batch-size', type=int, default=256)
|
||||
parser.add_argument('--hidden-size', type=int, default=512)
|
||||
parser.add_argument('--training-num', type=int, default=10)
|
||||
parser.add_argument('--test-num', type=int, default=10)
|
||||
parser.add_argument('--rew-norm', type=int, default=False)
|
||||
parser.add_argument('--vf-coef', type=float, default=0.5)
|
||||
parser.add_argument('--ent-coef', type=float, default=0.01)
|
||||
parser.add_argument('--gae-lambda', type=float, default=0.95)
|
||||
parser.add_argument('--lr-decay', type=int, default=True)
|
||||
parser.add_argument('--max-grad-norm', type=float, default=0.5)
|
||||
parser.add_argument('--eps-clip', type=float, default=0.2)
|
||||
parser.add_argument('--dual-clip', type=float, default=None)
|
||||
parser.add_argument('--value-clip', type=int, default=0)
|
||||
parser.add_argument('--norm-adv', type=int, default=1)
|
||||
parser.add_argument('--recompute-adv', type=int, default=0)
|
||||
parser.add_argument('--logdir', type=str, default='log')
|
||||
parser.add_argument('--render', type=float, default=0.)
|
||||
parser.add_argument(
|
||||
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
|
||||
)
|
||||
parser.add_argument('--frames-stack', type=int, default=4)
|
||||
parser.add_argument('--resume-path', type=str, default=None)
|
||||
parser.add_argument('--resume-id', type=str, default=None)
|
||||
parser.add_argument(
|
||||
'--logger',
|
||||
type=str,
|
||||
default="tensorboard",
|
||||
choices=["tensorboard", "wandb"],
|
||||
)
|
||||
parser.add_argument(
|
||||
'--watch',
|
||||
default=False,
|
||||
action='store_true',
|
||||
help='watch the play of pre-trained policy only'
|
||||
)
|
||||
parser.add_argument('--save-buffer-name', type=str, default=None)
|
||||
parser.add_argument(
|
||||
'--icm-lr-scale',
|
||||
type=float,
|
||||
default=0.,
|
||||
help='use intrinsic curiosity module with this lr scale'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--icm-reward-scale',
|
||||
type=float,
|
||||
default=0.01,
|
||||
help='scaling factor for intrinsic curiosity reward'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--icm-forward-loss-weight',
|
||||
type=float,
|
||||
default=0.2,
|
||||
help='weight for the forward model loss in ICM'
|
||||
)
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def make_atari_env(args):
|
||||
return wrap_deepmind(
|
||||
args.task, frame_stack=args.frames_stack, scale=args.scale_obs
|
||||
)
|
||||
|
||||
|
||||
def make_atari_env_watch(args):
|
||||
return wrap_deepmind(
|
||||
args.task,
|
||||
frame_stack=args.frames_stack,
|
||||
episode_life=False,
|
||||
clip_rewards=False,
|
||||
scale=args.scale_obs
|
||||
)
|
||||
|
||||
|
||||
def test_ppo(args=get_args()):
|
||||
env = make_atari_env(args)
|
||||
args.state_shape = env.observation_space.shape or env.observation_space.n
|
||||
args.action_shape = env.action_space.shape or env.action_space.n
|
||||
# should be N_FRAMES x H x W
|
||||
print("Observations shape:", args.state_shape)
|
||||
print("Actions shape:", args.action_shape)
|
||||
# make environments
|
||||
train_envs = ShmemVectorEnv(
|
||||
[lambda: make_atari_env(args) for _ in range(args.training_num)]
|
||||
)
|
||||
test_envs = ShmemVectorEnv(
|
||||
[lambda: make_atari_env_watch(args) for _ in range(args.test_num)]
|
||||
)
|
||||
# seed
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
train_envs.seed(args.seed)
|
||||
test_envs.seed(args.seed)
|
||||
# define model
|
||||
net = DQN(
|
||||
*args.state_shape,
|
||||
args.action_shape,
|
||||
device=args.device,
|
||||
features_only=True,
|
||||
output_dim=args.hidden_size
|
||||
)
|
||||
actor = Actor(net, args.action_shape, device=args.device, softmax_output=False)
|
||||
critic = Critic(net, device=args.device)
|
||||
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
|
||||
|
||||
lr_scheduler = None
|
||||
if args.lr_decay:
|
||||
# decay learning rate to 0 linearly
|
||||
max_update_num = np.ceil(
|
||||
args.step_per_epoch / args.step_per_collect
|
||||
) * args.epoch
|
||||
|
||||
lr_scheduler = LambdaLR(
|
||||
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num
|
||||
)
|
||||
|
||||
# define policy
|
||||
def dist(p):
|
||||
return torch.distributions.Categorical(logits=p)
|
||||
|
||||
policy = PPOPolicy(
|
||||
actor,
|
||||
critic,
|
||||
optim,
|
||||
dist,
|
||||
discount_factor=args.gamma,
|
||||
gae_lambda=args.gae_lambda,
|
||||
max_grad_norm=args.max_grad_norm,
|
||||
vf_coef=args.vf_coef,
|
||||
ent_coef=args.ent_coef,
|
||||
reward_normalization=args.rew_norm,
|
||||
action_scaling=False,
|
||||
lr_scheduler=lr_scheduler,
|
||||
action_space=env.action_space,
|
||||
eps_clip=args.eps_clip,
|
||||
value_clip=args.value_clip,
|
||||
dual_clip=args.dual_clip,
|
||||
advantage_normalization=args.norm_adv,
|
||||
recompute_advantage=args.recompute_adv
|
||||
).to(args.device)
|
||||
if args.icm_lr_scale > 0:
|
||||
feature_net = DQN(
|
||||
*args.state_shape, args.action_shape, args.device, features_only=True
|
||||
)
|
||||
action_dim = np.prod(args.action_shape)
|
||||
feature_dim = feature_net.output_dim
|
||||
icm_net = IntrinsicCuriosityModule(
|
||||
feature_net.net,
|
||||
feature_dim,
|
||||
action_dim,
|
||||
hidden_sizes=args.hidden_sizes,
|
||||
device=args.device
|
||||
)
|
||||
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
|
||||
policy = ICMPolicy(
|
||||
policy, icm_net, icm_optim, args.icm_lr_scale, args.icm_reward_scale,
|
||||
args.icm_forward_loss_weight
|
||||
).to(args.device)
|
||||
# load a previous policy
|
||||
if args.resume_path:
|
||||
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
||||
print("Loaded agent from: ", args.resume_path)
|
||||
# replay buffer: `save_last_obs` and `stack_num` can be removed together
|
||||
# when you have enough RAM
|
||||
buffer = VectorReplayBuffer(
|
||||
args.buffer_size,
|
||||
buffer_num=len(train_envs),
|
||||
ignore_obs_next=True,
|
||||
save_only_last_obs=True,
|
||||
stack_num=args.frames_stack
|
||||
)
|
||||
# collector
|
||||
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
|
||||
test_collector = Collector(policy, test_envs, exploration_noise=True)
|
||||
# log
|
||||
log_name = 'ppo_icm' if args.icm_lr_scale > 0 else 'ppo'
|
||||
log_path = os.path.join(args.logdir, args.task, log_name)
|
||||
if args.logger == "tensorboard":
|
||||
writer = SummaryWriter(log_path)
|
||||
writer.add_text("args", str(args))
|
||||
logger = TensorboardLogger(writer)
|
||||
else:
|
||||
logger = WandbLogger(
|
||||
save_interval=1,
|
||||
project=args.task,
|
||||
name=log_name,
|
||||
run_id=args.resume_id,
|
||||
config=args,
|
||||
)
|
||||
|
||||
def save_fn(policy):
|
||||
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
||||
|
||||
def stop_fn(mean_rewards):
|
||||
if env.spec.reward_threshold:
|
||||
return mean_rewards >= env.spec.reward_threshold
|
||||
elif 'Pong' in args.task:
|
||||
return mean_rewards >= 20
|
||||
else:
|
||||
return False
|
||||
|
||||
def save_checkpoint_fn(epoch, env_step, gradient_step):
|
||||
# see also: https://pytorch.org/tutorials/beginner/saving_loading_models.html
|
||||
ckpt_path = os.path.join(log_path, 'checkpoint.pth')
|
||||
torch.save({'model': policy.state_dict()}, ckpt_path)
|
||||
return ckpt_path
|
||||
|
||||
# watch agent's performance
|
||||
def watch():
|
||||
print("Setup test envs ...")
|
||||
policy.eval()
|
||||
test_envs.seed(args.seed)
|
||||
if args.save_buffer_name:
|
||||
print(f"Generate buffer with size {args.buffer_size}")
|
||||
buffer = VectorReplayBuffer(
|
||||
args.buffer_size,
|
||||
buffer_num=len(test_envs),
|
||||
ignore_obs_next=True,
|
||||
save_only_last_obs=True,
|
||||
stack_num=args.frames_stack
|
||||
)
|
||||
collector = Collector(policy, test_envs, buffer, exploration_noise=True)
|
||||
result = collector.collect(n_step=args.buffer_size)
|
||||
print(f"Save buffer into {args.save_buffer_name}")
|
||||
# Unfortunately, pickle will cause oom with 1M buffer size
|
||||
buffer.save_hdf5(args.save_buffer_name)
|
||||
else:
|
||||
print("Testing agent ...")
|
||||
test_collector.reset()
|
||||
result = test_collector.collect(
|
||||
n_episode=args.test_num, render=args.render
|
||||
)
|
||||
rew = result["rews"].mean()
|
||||
print(f'Mean reward (over {result["n/ep"]} episodes): {rew}')
|
||||
|
||||
if args.watch:
|
||||
watch()
|
||||
exit(0)
|
||||
|
||||
# test train_collector and start filling replay buffer
|
||||
train_collector.collect(n_step=args.batch_size * args.training_num)
|
||||
# trainer
|
||||
result = onpolicy_trainer(
|
||||
policy,
|
||||
train_collector,
|
||||
test_collector,
|
||||
args.epoch,
|
||||
args.step_per_epoch,
|
||||
args.repeat_per_collect,
|
||||
args.test_num,
|
||||
args.batch_size,
|
||||
step_per_collect=args.step_per_collect,
|
||||
stop_fn=stop_fn,
|
||||
save_fn=save_fn,
|
||||
logger=logger,
|
||||
test_in_train=False,
|
||||
resume_from_log=args.resume_id is not None,
|
||||
save_checkpoint_fn=save_checkpoint_fn,
|
||||
)
|
||||
|
||||
pprint.pprint(result)
|
||||
watch()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_ppo(get_args())
|
BIN
examples/atari/results/ppo/Breakout_rew.png
Normal file
After Width: | Height: | Size: 142 KiB |
BIN
examples/atari/results/ppo/Enduro_rew.png
Normal file
After Width: | Height: | Size: 144 KiB |
BIN
examples/atari/results/ppo/MsPacman_rew.png
Normal file
After Width: | Height: | Size: 162 KiB |
BIN
examples/atari/results/ppo/Pong_rew.png
Normal file
After Width: | Height: | Size: 119 KiB |
BIN
examples/atari/results/ppo/Qbert_rew.png
Normal file
After Width: | Height: | Size: 146 KiB |
BIN
examples/atari/results/ppo/Seaquest_rew.png
Normal file
After Width: | Height: | Size: 136 KiB |
BIN
examples/atari/results/ppo/SpaceInvaders_rew.png
Normal file
After Width: | Height: | Size: 159 KiB |