From 493d3610220b011349203ef04fe5d589c6c93689 Mon Sep 17 00:00:00 2001 From: Tongzheng Ren Date: Sun, 5 Nov 2017 15:30:35 +0800 Subject: [PATCH] modified the network --- AlphaGo/Network.py | 90 ++++++++++++++++++++++++++-------------------- 1 file changed, 51 insertions(+), 39 deletions(-) diff --git a/AlphaGo/Network.py b/AlphaGo/Network.py index c98c6e2..f594be2 100644 --- a/AlphaGo/Network.py +++ b/AlphaGo/Network.py @@ -4,13 +4,6 @@ import time import multi_gpu import tensorflow.contrib.layers as layers -data = np.load("data.npz") -boards = data["boards"] -wins = data["wins"] -ps = data["ps"] -print (boards.shape) -print (wins.shape) -print (ps.shape) def residual_block(input, is_training): normalizer_params = {'is_training': is_training, 'updates_collections': None} @@ -44,7 +37,6 @@ def value_heads(input, is_training): h = layers.fully_connected(h, 1, activation_fn=tf.nn.tanh, weights_regularizer=layers.l2_regularizer(1e-4)) return h - x = tf.placeholder(tf.float32,shape=[None,19,19,17]) is_training = tf.placeholder(tf.bool, shape=[]) z = tf.placeholder(tf.float32, shape=[None, 1]) @@ -62,34 +54,54 @@ train_op = tf.train.RMSPropOptimizer(1e-2).minimize(total_loss) var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES) saver = tf.train.Saver(max_to_keep=10, var_list=var_list) -epochs = 100 -batch_size = 32 -batch_num = boards.shape[0] // batch_size -result_path = "./results/" -with multi_gpu.create_session() as sess: - sess.run(tf.global_variables_initializer()) - ckpt_file = tf.train.latest_checkpoint(result_path) - if ckpt_file is not None: - print('Restoring model from {}...'.format(ckpt_file)) - saver.restore(sess, ckpt_file) - for epoch in range(epochs): - time_train = -time.time() - index = np.arange(boards.shape[0]) - np.random.shuffle(index) - losses = [] - regs = [] - for iter in range(batch_num): - _, l, r, value, prob = sess.run([train_op, loss, reg, v, p], feed_dict={x:boards[index[iter*batch_size:(iter+1)*batch_size]], - z:wins[index[iter*batch_size:(iter+1)*batch_size]], - pi:ps[index[iter*batch_size:(iter+1)*batch_size]], - is_training:True}) - losses.append(l) - regs.append(r) - if iter % 1 == 0: - print("Epoch: {}, Iteration: {}, Time: {}, Loss: {}, Reg: {}".format(epoch, iter, time.time()+time_train, np.mean(np.array(losses)), np.mean(np.array(regs)))) - time_train=-time.time() - losses = [] - regs = [] - if iter % 20 == 0: - save_path = "Epoch{}.Iteration{}.ckpt".format(epoch, iter) - saver.save(sess, result_path + save_path) +def train(): + data = np.load("data.npz") + boards = data["boards"] + wins = data["wins"] + ps = data["ps"] + print (boards.shape) + print (wins.shape) + print (ps.shape) + epochs = 100 + batch_size = 32 + batch_num = boards.shape[0] // batch_size + result_path = "./results/" + with multi_gpu.create_session() as sess: + sess.run(tf.global_variables_initializer()) + ckpt_file = tf.train.latest_checkpoint(result_path) + if ckpt_file is not None: + print('Restoring model from {}...'.format(ckpt_file)) + saver.restore(sess, ckpt_file) + for epoch in range(epochs): + time_train = -time.time() + index = np.arange(boards.shape[0]) + np.random.shuffle(index) + losses = [] + regs = [] + for iter in range(batch_num): + _, l, r, value, prob = sess.run([train_op, loss, reg, v, p], feed_dict={x:boards[index[iter*batch_size:(iter+1)*batch_size]], + z:wins[index[iter*batch_size:(iter+1)*batch_size]], + pi:ps[index[iter*batch_size:(iter+1)*batch_size]], + is_training:True}) + losses.append(l) + regs.append(r) + if iter % 1 == 0: + print("Epoch: {}, Iteration: {}, Time: {}, Loss: {}, Reg: {}".format(epoch, iter, time.time()+time_train, np.mean(np.array(losses)), np.mean(np.array(regs)))) + time_train=-time.time() + losses = [] + regs = [] + if iter % 20 == 0: + save_path = "Epoch{}.Iteration{}.ckpt".format(epoch, iter) + saver.save(sess, result_path + save_path) + +def forward(board): + result_path = "./results/" + with multi_gpu.create_session() as sess: + sess.run(tf.global_variables_initializer()) + ckpt_file = tf.train.latest_checkpoint(result_path) + if ckpt_file is not None: + print('Restoring model from {}...'.format(ckpt_file)) + saver.restore(sess, ckpt_file) + else: + raise ValueError("No model loaded") + return sess.run([p,v], feed_dict={x:board}) \ No newline at end of file