merge gtp

This commit is contained in:
rtz19970824 2017-12-04 11:01:49 +08:00
parent a60ab99e59
commit 543d876f12
6 changed files with 251 additions and 172 deletions

View File

@ -11,7 +11,7 @@ import utils
class GTPEngine():
def __init__(self, **kwargs):
self.size = 19
self.size = 9
self.komi = 6.5
try:
self._game = kwargs['game_obj']

View File

@ -149,9 +149,6 @@ class Executor:
idx = [i for i,x in enumerate(self.game.board) if x == utils.EMPTY ][0]
return self.game._deflatten(idx)
def get_score(self):
'''
return score from BLACK perspective.
@ -182,12 +179,12 @@ class Executor:
class Game:
def __init__(self, size=19, komi=6.5):
def __init__(self, size=9, komi=6.5):
self.size = size
self.komi = 6.5
self.komi = komi
self.board = [utils.EMPTY] * (self.size * self.size)
#self.strategy = strategy()
self.strategy = None
self.strategy = strategy()
# self.strategy = None
self.executor = Executor(game = self)
self.history = []
self.past = deque(maxlen=8)
@ -227,11 +224,12 @@ class Game:
# move = self.strategy.gen_move(color)
# return move
move = self.strategy.gen_move(self.past, color)
print(move)
self.do_move(color, move)
return move
def status2symbol(self, s):
pool = {utils.WHITE: '#', utils.EMPTY: '.', utils.BLACK: '*', utils.FILL: 'F', utils.UNKNOWN: '?'}
pool = {utils.WHITE: 'O', utils.EMPTY: '.', utils.BLACK: 'X', utils.FILL: 'F', utils.UNKNOWN: '?'}
return pool[s]
def show_board(self):

211
AlphaGo/network_small.py Normal file
View File

@ -0,0 +1,211 @@
import os
import time
import sys
import numpy as np
import time
import tensorflow as tf
import tensorflow.contrib.layers as layers
import multi_gpu
import time
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
def residual_block(input, is_training):
normalizer_params = {'is_training': is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS}
h = layers.conv2d(input, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.conv2d(h, 256, kernel_size=3, stride=1, activation_fn=tf.identity,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = h + input
return tf.nn.relu(h)
def policy_heads(input, is_training):
normalizer_params = {'is_training': is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS}
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.flatten(h)
h = layers.fully_connected(h, 82, activation_fn=tf.identity, weights_regularizer=layers.l2_regularizer(1e-4))
return h
def value_heads(input, is_training):
normalizer_params = {'is_training': is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS}
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.flatten(h)
h = layers.fully_connected(h, 256, activation_fn=tf.nn.relu, weights_regularizer=layers.l2_regularizer(1e-4))
h = layers.fully_connected(h, 1, activation_fn=tf.nn.tanh, weights_regularizer=layers.l2_regularizer(1e-4))
return h
class Network(object):
def __init__(self):
self.x = tf.placeholder(tf.float32, shape=[None, 9, 9, 17])
self.is_training = tf.placeholder(tf.bool, shape=[])
self.z = tf.placeholder(tf.float32, shape=[None, 1])
self.pi = tf.placeholder(tf.float32, shape=[None, 82])
self.build_network()
def build_network(self):
h = layers.conv2d(self.x, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu, normalizer_fn=layers.batch_norm,
normalizer_params={'is_training': self.is_training,
'updates_collections': tf.GraphKeys.UPDATE_OPS},
weights_regularizer=layers.l2_regularizer(1e-4))
for i in range(19):
h = residual_block(h, self.is_training)
self.v = value_heads(h, self.is_training)
self.p = policy_heads(h, self.is_training)
# loss = tf.reduce_mean(tf.square(z-v)) - tf.multiply(pi, tf.log(tf.clip_by_value(tf.nn.softmax(p), 1e-8, tf.reduce_max(tf.nn.softmax(p)))))
self.value_loss = tf.reduce_mean(tf.square(self.z - self.v))
self.policy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.pi, logits=self.p))
self.reg = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
self.total_loss = self.value_loss + self.policy_loss + self.reg
# train_op = tf.train.MomentumOptimizer(1e-4, momentum=0.9, use_nesterov=True).minimize(total_loss)
self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(self.update_ops):
self.train_op = tf.train.RMSPropOptimizer(1e-4).minimize(self.total_loss)
self.var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
self.saver = tf.train.Saver(max_to_keep=10, var_list=self.var_list)
def train(self):
data_path = "/home/tongzheng/data/"
data_name = os.listdir("/home/tongzheng/data/")
epochs = 100
batch_size = 128
result_path = "./checkpoints/"
with multi_gpu.create_session() as sess:
sess.run(tf.global_variables_initializer())
ckpt_file = tf.train.latest_checkpoint(result_path)
if ckpt_file is not None:
print('Restoring model from {}...'.format(ckpt_file))
self.saver.restore(sess, ckpt_file)
for epoch in range(epochs):
for name in data_name:
data = np.load(data_path + name)
boards = data["boards"]
wins = data["wins"]
ps = data["ps"]
print (boards.shape)
print (wins.shape)
print (ps.shape)
batch_num = boards.shape[0] // batch_size
index = np.arange(boards.shape[0])
np.random.shuffle(index)
value_losses = []
policy_losses = []
regs = []
time_train = -time.time()
for iter in range(batch_num):
lv, lp, r, value, prob, _ = sess.run(
[self.value_loss, self.policy_loss, self.reg, self.v, tf.nn.softmax(p), self.train_op],
feed_dict={self.x: boards[
index[iter * batch_size:(iter + 1) * batch_size]],
self.z: wins[index[
iter * batch_size:(iter + 1) * batch_size]],
self.pi: ps[index[
iter * batch_size:(iter + 1) * batch_size]],
self.is_training: True})
value_losses.append(lv)
policy_losses.append(lp)
regs.append(r)
if iter % 1 == 0:
print(
"Epoch: {}, Part {}, Iteration: {}, Time: {}, Value Loss: {}, Policy Loss: {}, Reg: {}".format(
epoch, name, iter, time.time() + time_train, np.mean(np.array(value_losses)),
np.mean(np.array(policy_losses)), np.mean(np.array(regs))))
time_train = -time.time()
value_losses = []
policy_losses = []
regs = []
if iter % 20 == 0:
save_path = "Epoch{}.Part{}.Iteration{}.ckpt".format(epoch, name, iter)
self.saver.save(sess, result_path + save_path)
del data, boards, wins, ps
# def forward(call_number):
# # checkpoint_path = "/home/yama/rl/tianshou/AlphaGo/checkpoints"
# checkpoint_path = "/home/jialian/stuGo/tianshou/stuGo/checkpoints/"
# board_file = np.genfromtxt("/home/jialian/stuGo/tianshou/leela-zero/src/mcts_nn_files/board_" + call_number,
# dtype='str');
# human_board = np.zeros((17, 19, 19))
#
# # TODO : is it ok to ignore the last channel?
# for i in range(17):
# human_board[i] = np.array(list(board_file[i])).reshape(19, 19)
# # print("============================")
# # print("human board sum : " + str(np.sum(human_board[-1])))
# # print("============================")
# # print(human_board)
# # print("============================")
# # rint(human_board)
# feed_board = human_board.transpose(1, 2, 0).reshape(1, 19, 19, 17)
# # print(feed_board[:,:,:,-1])
# # print(feed_board.shape)
#
# # npz_board = np.load("/home/yama/rl/tianshou/AlphaGo/data/7f83928932f64a79bc1efdea268698ae.npz")
# # print(npz_board["boards"].shape)
# # feed_board = npz_board["boards"][10].reshape(-1, 19, 19, 17)
# ##print(feed_board)
# # show_board = feed_board[0].transpose(2, 0, 1)
# # print("board shape : ", show_board.shape)
# # print(show_board)
#
# itflag = False
# with multi_gpu.create_session() as sess:
# sess.run(tf.global_variables_initializer())
# ckpt_file = tf.train.latest_checkpoint(checkpoint_path)
# if ckpt_file is not None:
# # print('Restoring model from {}...'.format(ckpt_file))
# saver.restore(sess, ckpt_file)
# else:
# raise ValueError("No model loaded")
# res = sess.run([tf.nn.softmax(p), v], feed_dict={x: feed_board, is_training: itflag})
# # res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][300].reshape(-1, 19, 19, 17), is_training:False})
# # res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][50].reshape(-1, 19, 19, 17), is_training:True})
# # print(np.argmax(res[0]))
# np.savetxt(sys.stdout, res[0][0], fmt="%.6f", newline=" ")
# np.savetxt(sys.stdout, res[1][0], fmt="%.6f", newline=" ")
# pv_file = "/home/jialian/stuGotianshou/leela-zero/src/mcts_nn_files/policy_value"
# np.savetxt(pv_file, np.concatenate((res[0][0], res[1][0])), fmt="%.6f", newline=" ")
# # np.savetxt(pv_file, res[1][0], fmt="%.6f", newline=" ")
# return res
def forward(self):
# checkpoint_path = "/home/tongzheng/tianshou/AlphaGo/checkpoints/"
sess = multi_gpu.create_session()
sess.run(tf.global_variables_initializer())
# ckpt_file = tf.train.latest_checkpoint(checkpoint_path)
# if ckpt_file is not None:
# print('Restoring model from {}...'.format(ckpt_file))
# self.saver.restore(sess, ckpt_file)
# print('Successfully loaded')
# else:
# raise ValueError("No model loaded")
# prior, value = sess.run([tf.nn.softmax(p), v], feed_dict={x: state, is_training: False})
# return prior, value
return sess
if __name__ == '__main__':
state = np.random.randint(0, 1, [1, 9, 9, 17])
net = Network()
sess = net.forward()
start = time.time()
for i in range(100):
sess.run([tf.nn.softmax(net.p), net.v], feed_dict={net.x: state, net.is_training: False})
print("Step {}, Cumulative time {}".format(i, time.time() - start))

View File

@ -3,14 +3,14 @@ sys.path.append(os.path.join(os.path.dirname(__file__), os.path.pardir))
import numpy as np
import utils
import time
import Network
import network_small
import tensorflow as tf
from collections import deque
from tianshou.core.mcts.mcts import MCTS
class GoEnv:
def __init__(self, size=19, komi=6.5):
def __init__(self, size=9, komi=6.5):
self.size = size
self.komi = 6.5
self.board = [utils.EMPTY] * (self.size * self.size)
@ -138,15 +138,15 @@ class GoEnv:
color = 1
else:
color = -1
if action == 361:
if action == 81:
vertex = (0, 0)
else:
vertex = (action / 19 + 1, action % 19)
vertex = (action / 9 + 1, action % 9)
self.do_move(color, vertex)
new_state = np.concatenate(
[state[:, :, :, 1:8], (np.array(self.board) == 1).reshape(1, 19, 19, 1),
state[:, :, :, 9:16], (np.array(self.board) == -1).reshape(1, 19, 19, 1),
np.array(1 - state[:, :, :, -1]).reshape(1, 19, 19, 1)],
[state[:, :, :, 1:8], (np.array(self.board) == 1).reshape(1, 9, 9, 1),
state[:, :, :, 9:16], (np.array(self.board) == -1).reshape(1, 9, 9, 1),
np.array(1 - state[:, :, :, -1]).reshape(1, 9, 9, 1)],
axis=3)
return new_state, 0
@ -154,20 +154,20 @@ class GoEnv:
class strategy(object):
def __init__(self):
self.simulator = GoEnv()
self.net = Network.Network()
self.net = network_small.Network()
self.sess = self.net.forward()
self.evaluator = lambda state: self.sess.run([tf.nn.softmax(self.net.p), self.net.v],
feed_dict={self.net.x: state, self.net.is_training: False})
def data_process(self, history, color):
state = np.zeros([1, 19, 19, 17])
state = np.zeros([1, 9, 9, 17])
for i in range(8):
state[0, :, :, i] = history[i] == 1
state[0, :, :, i + 8] = history[i] == -1
if color == 1:
state[0, :, :, 16] = np.ones([19, 19])
state[0, :, :, 16] = np.ones([9, 9])
if color == -1:
state[0, :, :, 16] = np.zeros([19, 19])
state[0, :, :, 16] = np.zeros([9, 9])
return state
def gen_move(self, history, color):
@ -175,12 +175,12 @@ class strategy(object):
self.simulator.board = history[-1]
state = self.data_process(history, color)
prior = self.evaluator(state)[0]
mcts = MCTS(self.simulator, self.evaluator, state, 362, prior, inverse=True, max_step=100)
mcts = MCTS(self.simulator, self.evaluator, state, 82, prior, inverse=True, max_step=100)
temp = 1
p = mcts.root.N ** temp / np.sum(mcts.root.N ** temp)
choice = np.random.choice(362, 1, p=p).tolist()[0]
if choice == 361:
choice = np.random.choice(82, 1, p=p).tolist()[0]
if choice == 81:
move = (0, 0)
else:
move = (choice / 19 + 1, choice % 19 + 1)
move = (choice / 9 + 1, choice % 9 + 1)
return move

View File

@ -11,153 +11,24 @@ import utils
g = Game()
e = GTPEngine(game_obj=g)
res = e.run_cmd('1 protocol_version')
print(e.known_commands)
print(res)
#res = e.run_cmd('2 name')
#print(res)
#res = e.run_cmd('3 known_command quit')
#print(res)
#res = e.run_cmd('4 unknown_command quitagain')
#print(res)
#res = e.run_cmd('5 list_commands')
#print(res)
#res = e.run_cmd('6 komi 6')
#print(res)
#res = e.run_cmd('7 play BLACK C3')
#print(res)
# res = e.run_cmd('play BLACK C4')
# res = e.run_cmd('play BLACK C5')
# res = e.run_cmd('play BLACK C6')
# res = e.run_cmd('play BLACK D3')
# print(res)
#res = e.run_cmd('8 genmove WHITE')
#print(res)
#g.show_board()
# res = e.run_cmd('8 genmove BLACK')
# print(res)
# g.show_board()
#
# res = e.run_cmd('8 genmove WHITE')
# print(res)
# g.show_board()
#
# res = e.run_cmd('8 genmove BLACK')
# print(res)
# g.show_board()
#
# res = e.run_cmd('8 genmove WHITE')
# print(res)
# g.show_board()
# #g.show_board()
# print(g.check_valid((10, 9)))
# print(g.executor._neighbor((1,1)))
# print(g.do_move(utils.WHITE, (4, 6)))
# #g.show_board()
#
#
# res = e.run_cmd('play BLACK L10')
# res = e.run_cmd('play BLACK L11')
# res = e.run_cmd('play BLACK L12')
# res = e.run_cmd('play BLACK L13')
# res = e.run_cmd('play BLACK L14')
# res = e.run_cmd('play BLACK m15')
# res = e.run_cmd('play BLACK m9')
# res = e.run_cmd('play BLACK C9')
# res = e.run_cmd('play BLACK D9')
# res = e.run_cmd('play BLACK E9')
# res = e.run_cmd('play BLACK F9')
# res = e.run_cmd('play BLACK G9')
# res = e.run_cmd('play BLACK H9')
# res = e.run_cmd('play BLACK I9')
#
# res = e.run_cmd('play BLACK N9')
# res = e.run_cmd('play BLACK N15')
# res = e.run_cmd('play BLACK O10')
# res = e.run_cmd('play BLACK O11')
# res = e.run_cmd('play BLACK O12')
# res = e.run_cmd('play BLACK O13')
# res = e.run_cmd('play BLACK O14')
# res = e.run_cmd('play BLACK M12')
#
# res = e.run_cmd('play WHITE M10')
# res = e.run_cmd('play WHITE M11')
# res = e.run_cmd('play WHITE N10')
# res = e.run_cmd('play WHITE N11')
#
# res = e.run_cmd('play WHITE M13')
# res = e.run_cmd('play WHITE M14')
# res = e.run_cmd('play WHITE N13')
# res = e.run_cmd('play WHITE N14')
# print(res)
#
# res = e.run_cmd('play BLACK N12')
# print(res)
# #g.show_board()
#
res = e.run_cmd('play BLACK P16')
res = e.run_cmd('play BLACK P17')
res = e.run_cmd('play BLACK P18')
res = e.run_cmd('play BLACK P19')
res = e.run_cmd('play BLACK Q16')
res = e.run_cmd('play BLACK R16')
res = e.run_cmd('play BLACK S16')
res = e.run_cmd('play WHITE S18')
res = e.run_cmd('play WHITE S17')
res = e.run_cmd('play WHITE Q19')
res = e.run_cmd('play WHITE Q18')
res = e.run_cmd('play WHITE Q17')
res = e.run_cmd('play WHITE R18')
res = e.run_cmd('play WHITE R17')
res = e.run_cmd('play BLACK S19')
# print(res)
# #g.show_board()
#
res = e.run_cmd('play WHITE R19')
# g.show_board()
#
res = e.run_cmd('play BLACK S19')
# print(res)
# g.show_board()
#
res = e.run_cmd('play BLACK S19')
# print(res)
#
#
# res = e.run_cmd('play BLACK E17')
# res = e.run_cmd('play BLACK F16')
# res = e.run_cmd('play BLACK F18')
# res = e.run_cmd('play BLACK G17')
# res = e.run_cmd('play WHITE G16')
# res = e.run_cmd('play WHITE G18')
# res = e.run_cmd('play WHITE H17')
# g.show_board()
#
# res = e.run_cmd('play WHITE F17')
# g.show_board()
#
# res = e.run_cmd('play BLACK G17')
# print(res)
# g.show_board()
#
# res = e.run_cmd('play BLACK G19')
# res = e.run_cmd('play BLACK G17')
e.run_cmd("genmove BLACK")
g.show_board()
res = e.run_cmd('play WHITE S18')
e.run_cmd("genmove WHITE")
g.show_board()
e.run_cmd("genmove BLACK")
g.show_board()
e.run_cmd("genmove WHITE")
g.show_board()
e.run_cmd("genmove BLACK")
g.show_board()
e.run_cmd("genmove WHITE")
g.show_board()
e.run_cmd("genmove BLACK")
g.show_board()
e.run_cmd("genmove WHITE")
g.show_board()
e.run_cmd("genmove BLACK")
g.show_board()
e.run_cmd("genmove WHITE")
g.show_board()
res = g.executor.get_score()
print(res)

View File

@ -160,7 +160,6 @@ class MCTS:
def expand(self):
node, new_action = self.root.selection(self.simulator)
value = node.children[new_action].expansion(self.evaluator, self.action_num)
print("Value:{}".format(value))
node.children[new_action].backpropagation(value + 0.)