Modification and doc for unit test
This commit is contained in:
parent
01f39f40d3
commit
5849776c9a
21
tianshou/core/mcts/unit_test/README.md
Normal file
21
tianshou/core/mcts/unit_test/README.md
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
# Unit Test
|
||||||
|
|
||||||
|
This is a two-player zero-sum perfect information extensive game. Player 1 and player 2 iteratively choose actions. At every iteration, player 1 players first and player 2 follows. Both players have choices 0 or 1.
|
||||||
|
|
||||||
|
The number of iterations is given as a fixed number. After one game finished, the game counts the number of 0s and 1s that are choosen. If the number of 1 is more than that of 0, player 1 gets 1 and player 2 gets -1. If the number of 1 is less than that of 0, player 1 gets -1 and player 2 gets 1. Otherwise, they both get 0.
|
||||||
|
|
||||||
|
## Files
|
||||||
|
|
||||||
|
+ game.py: run this file to play the game.
|
||||||
|
+ agent.py: a class for players. MCTS is used here.
|
||||||
|
+ ZOgame.py: the game environment.
|
||||||
|
+ mcts.py: MCTS method.
|
||||||
|
+ Evaluator: evaluator for MCTS. Rollout policy is also here.
|
||||||
|
|
||||||
|
## Parameters
|
||||||
|
|
||||||
|
Three paramters are given in game.py.
|
||||||
|
|
||||||
|
+ size: the number of iterations
|
||||||
|
+ searching_step: the number of searching times of MCTS for one step
|
||||||
|
+ temp: the temporature paramter used to tradeoff exploitation and exploration
|
@ -29,7 +29,7 @@ class ZOTree:
|
|||||||
length = len(seq)
|
length = len(seq)
|
||||||
if length != self.depth:
|
if length != self.depth:
|
||||||
raise ValueError("The game is not terminated!")
|
raise ValueError("The game is not terminated!")
|
||||||
result = np.sum(seq)
|
result = np.sum(seq)
|
||||||
if result > self.size:
|
if result > self.size:
|
||||||
winner = 1
|
winner = 1
|
||||||
elif result < self.size:
|
elif result < self.size:
|
||||||
|
@ -4,13 +4,15 @@ import ZOGame
|
|||||||
import Evaluator
|
import Evaluator
|
||||||
from mcts import MCTS
|
from mcts import MCTS
|
||||||
|
|
||||||
temp = 1
|
|
||||||
|
|
||||||
|
|
||||||
class Agent:
|
class Agent:
|
||||||
def __init__(self, size, color):
|
def __init__(self, size, color, searching_step, temp):
|
||||||
self.size = size
|
self.size = size
|
||||||
self.color = color
|
self.color = color
|
||||||
|
self.searching_step = searching_step
|
||||||
|
self.temp = temp
|
||||||
self.simulator = ZOGame.ZOTree(self.size)
|
self.simulator = ZOGame.ZOTree(self.size)
|
||||||
self.evaluator = Evaluator.rollout_policy(self.simulator, 2)
|
self.evaluator = Evaluator.rollout_policy(self.simulator, 2)
|
||||||
|
|
||||||
@ -18,10 +20,9 @@ class Agent:
|
|||||||
if len(seq) >= 2 * self.size:
|
if len(seq) >= 2 * self.size:
|
||||||
raise ValueError("Game is terminated.")
|
raise ValueError("Game is terminated.")
|
||||||
mcts = MCTS(self.simulator, self.evaluator, [seq, self.color], 2, inverse=True)
|
mcts = MCTS(self.simulator, self.evaluator, [seq, self.color], 2, inverse=True)
|
||||||
mcts.search(max_step=50)
|
mcts.search(max_step=self.searching_step)
|
||||||
N = mcts.root.N
|
N = mcts.root.N
|
||||||
N = np.power(N, 1.0 / temp)
|
N = np.power(N, 1.0 / self.temp)
|
||||||
prob = N / np.sum(N)
|
prob = N / np.sum(N)
|
||||||
print("prob: {}".format(prob))
|
|
||||||
action = int(np.random.binomial(1, prob[1]))
|
action = int(np.random.binomial(1, prob[1]))
|
||||||
return action
|
return action
|
||||||
|
@ -3,17 +3,19 @@ import agent
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
size = 10
|
||||||
|
seaching_step = 100
|
||||||
|
temp = 1
|
||||||
print("Our game has 2 players.")
|
print("Our game has 2 players.")
|
||||||
print("Player 1 has color 1 and plays first. Player 2 has color -1 and plays following player 1.")
|
print("Player 1 has color 1 and plays first. Player 2 has color -1 and plays following player 1.")
|
||||||
print("Both player choose 1 or 0 for an action.")
|
print("Both player choose 1 or 0 for an action.")
|
||||||
size = 2
|
|
||||||
print("This game has {} iterations".format(size))
|
print("This game has {} iterations".format(size))
|
||||||
print("If the final sequence has more 1 that 0, player 1 wins.")
|
print("If the final sequence has more 1 that 0, player 1 wins.")
|
||||||
print("If the final sequence has less 1 that 0, player 2 wins.")
|
print("If the final sequence has less 1 that 0, player 2 wins.")
|
||||||
print("Otherwise, both players get 0.\n")
|
print("Otherwise, both players get 0.\n")
|
||||||
game = ZOGame.ZOTree(size)
|
game = ZOGame.ZOTree(size)
|
||||||
player1 = agent.Agent(size, 1)
|
player1 = agent.Agent(size, 1, seaching_step, temp)
|
||||||
player2 = agent.Agent(size, -1)
|
player2 = agent.Agent(size, -1, seaching_step, temp)
|
||||||
|
|
||||||
seq = []
|
seq = []
|
||||||
print("Sequence is {}\n".format(seq))
|
print("Sequence is {}\n".format(seq))
|
||||||
|
@ -162,8 +162,6 @@ class MCTS(object):
|
|||||||
self.expansion_time += exp_time
|
self.expansion_time += exp_time
|
||||||
self.backpropagation_time += back_time
|
self.backpropagation_time += back_time
|
||||||
step += 1
|
step += 1
|
||||||
print("Q = {}".format(self.root.Q))
|
|
||||||
print("N = {}".format(self.root.N))
|
|
||||||
if self.debug:
|
if self.debug:
|
||||||
file = open("mcts_profiling.log", "a")
|
file = open("mcts_profiling.log", "a")
|
||||||
file.write("[" + str(self.role) + "]"
|
file.write("[" + str(self.role) + "]"
|
||||||
|
Loading…
x
Reference in New Issue
Block a user