From 62d58faa02de0a9a7eafbd12c0a686dede66be94 Mon Sep 17 00:00:00 2001 From: Dominik Jain Date: Fri, 12 Jan 2024 13:36:08 +0100 Subject: [PATCH] Add example from README (with minor updates) --- examples/discrete/discrete_dqn.py | 78 +++++++++++++++++++++++++++++++ 1 file changed, 78 insertions(+) create mode 100644 examples/discrete/discrete_dqn.py diff --git a/examples/discrete/discrete_dqn.py b/examples/discrete/discrete_dqn.py new file mode 100644 index 0000000..55ca5ef --- /dev/null +++ b/examples/discrete/discrete_dqn.py @@ -0,0 +1,78 @@ +import gymnasium as gym +import torch +from torch.utils.tensorboard import SummaryWriter + +import tianshou as ts + + +def main(): + task = "CartPole-v1" + lr, epoch, batch_size = 1e-3, 10, 64 + train_num, test_num = 10, 100 + gamma, n_step, target_freq = 0.9, 3, 320 + buffer_size = 20000 + eps_train, eps_test = 0.1, 0.05 + step_per_epoch, step_per_collect = 10000, 10 + logger = ts.utils.TensorboardLogger(SummaryWriter("log/dqn")) # TensorBoard is supported! + # For other loggers: https://tianshou.readthedocs.io/en/master/tutorials/logger.html + + # you can also try with SubprocVectorEnv + train_envs = ts.env.DummyVectorEnv([lambda: gym.make(task) for _ in range(train_num)]) + test_envs = ts.env.DummyVectorEnv([lambda: gym.make(task) for _ in range(test_num)]) + + from tianshou.utils.net.common import Net + + # you can define other net by following the API: + # https://tianshou.readthedocs.io/en/master/tutorials/dqn.html#build-the-network + env = gym.make(task, render_mode="human") + state_shape = env.observation_space.shape or env.observation_space.n + action_shape = env.action_space.shape or env.action_space.n + net = Net(state_shape=state_shape, action_shape=action_shape, hidden_sizes=[128, 128, 128]) + optim = torch.optim.Adam(net.parameters(), lr=lr) + + policy = ts.policy.DQNPolicy( + model=net, + optim=optim, + discount_factor=gamma, + action_space=env.action_space, + estimation_step=n_step, + target_update_freq=target_freq, + ) + train_collector = ts.data.Collector( + policy, + train_envs, + ts.data.VectorReplayBuffer(buffer_size, train_num), + exploration_noise=True, + ) + test_collector = ts.data.Collector( + policy, + test_envs, + exploration_noise=True, + ) # because DQN uses epsilon-greedy method + + result = ts.trainer.OffpolicyTrainer( + policy=policy, + train_collector=train_collector, + test_collector=test_collector, + max_epoch=epoch, + step_per_epoch=step_per_epoch, + step_per_collect=step_per_collect, + episode_per_test=test_num, + batch_size=batch_size, + update_per_step=1 / step_per_collect, + train_fn=lambda epoch, env_step: policy.set_eps(eps_train), + test_fn=lambda epoch, env_step: policy.set_eps(eps_test), + stop_fn=lambda mean_rewards: mean_rewards >= env.spec.reward_threshold, + logger=logger, + ).run() + print(f"Finished training in {result.timing.total_time} seconds") + + # watch performance + policy.eval() + policy.set_eps(eps_test) + collector = ts.data.Collector(policy, env, exploration_noise=True) + collector.collect(n_episode=100, render=1 / 35) + + +if __name__ == "__main__": + main()