rename variable for clarity

This commit is contained in:
Dong Yan 2017-12-19 11:16:17 +08:00
parent 1a164d4d7d
commit 72a9f4823c
3 changed files with 80 additions and 79 deletions

View File

@ -29,7 +29,7 @@ class Game:
def __init__(self, size=9, komi=6.5, checkpoint_path=None): def __init__(self, size=9, komi=6.5, checkpoint_path=None):
self.size = size self.size = size
self.komi = komi self.komi = komi
self.board = [utils.EMPTY] * (self.size * self.size) self.board = [utils.EMPTY] * (self.size ** 2)
self.history = [] self.history = []
self.latest_boards = deque(maxlen=8) self.latest_boards = deque(maxlen=8)
for _ in range(8): for _ in range(8):
@ -54,7 +54,7 @@ class Game:
return (x,y) return (x,y)
def clear(self): def clear(self):
self.board = [utils.EMPTY] * (self.size * self.size) self.board = [utils.EMPTY] * (self.size ** 2)
self.history = [] self.history = []
for _ in range(8): for _ in range(8):
self.latest_boards.append(self.board) self.latest_boards.append(self.board)
@ -66,11 +66,11 @@ class Game:
def set_komi(self, k): def set_komi(self, k):
self.komi = k self.komi = k
def generate_nn_input(self, history, color): def generate_nn_input(self, latest_boards, color):
state = np.zeros([1, self.size, self.size, 17]) state = np.zeros([1, self.size, self.size, 17])
for i in range(8): for i in range(8):
state[0, :, :, i] = np.array(np.array(history[i]) == np.ones(self.size ** 2)).reshape(self.size, self.size) state[0, :, :, i] = np.array(np.array(latest_boards[i]) == np.ones(self.size ** 2)).reshape(self.size, self.size)
state[0, :, :, i + 8] = np.array(np.array(history[i]) == -np.ones(self.size ** 2)).reshape(self.size, self.size) state[0, :, :, i + 8] = np.array(np.array(latest_boards[i]) == -np.ones(self.size ** 2)).reshape(self.size, self.size)
if color == utils.BLACK: if color == utils.BLACK:
state[0, :, :, 16] = np.ones([self.size, self.size]) state[0, :, :, 16] = np.ones([self.size, self.size])
if color == utils.WHITE: if color == utils.WHITE:
@ -78,9 +78,9 @@ class Game:
return state return state
def strategy_gen_move(self, latest_boards, color): def strategy_gen_move(self, latest_boards, color):
self.simulator.latest_boards = copy.copy(latest_boards) self.simulator.simulate_latest_boards = copy.copy(latest_boards)
self.simulator.board = copy.copy(latest_boards[-1]) self.simulator.simulate_board = copy.copy(latest_boards[-1])
nn_input = self.generate_nn_input(self.simulator.latest_boards, color) nn_input = self.generate_nn_input(self.simulator.simulate_latest_boards, color)
mcts = MCTS(self.simulator, self.evaluator, nn_input, self.size ** 2 + 1, inverse=True, max_step=1) mcts = MCTS(self.simulator, self.evaluator, nn_input, self.size ** 2 + 1, inverse=True, max_step=1)
temp = 1 temp = 1
prob = mcts.root.N ** temp / np.sum(mcts.root.N ** temp) prob = mcts.root.N ** temp / np.sum(mcts.root.N ** temp)

View File

@ -28,7 +28,7 @@ class Go:
def _find_block(self, vertex): def _find_block(self, vertex):
block = [] block = []
status = [False] * (self.game.size * self.game.size) status = [False] * (self.game.size ** 2)
color = self.game.board[self.game._flatten(vertex)] color = self.game.board[self.game._flatten(vertex)]
self._bfs(vertex, color, block, status) self._bfs(vertex, color, block, status)
@ -40,7 +40,7 @@ class Go:
def _find_boarder(self, vertex): def _find_boarder(self, vertex):
block = [] block = []
status = [False] * (self.game.size * self.game.size) status = [False] * (self.game.size ** 2)
self._bfs(vertex, utils.EMPTY, block, status) self._bfs(vertex, utils.EMPTY, block, status)
border = [] border = []
for b in block: for b in block:
@ -141,6 +141,46 @@ class Go:
idx = [i for i,x in enumerate(self.game.board) if x == utils.EMPTY ][0] idx = [i for i,x in enumerate(self.game.board) if x == utils.EMPTY ][0]
return self.game._deflatten(idx) return self.game._deflatten(idx)
def _add_nearby_stones(self, neighbor_vertex_set, start_vertex_x, start_vertex_y, x_diff, y_diff, num_step):
'''
add the nearby stones around the input vertex
:param neighbor_vertex_set: input list
:param start_vertex_x: x axis of the input vertex
:param start_vertex_y: y axis of the input vertex
:param x_diff: add x axis
:param y_diff: add y axis
:param num_step: number of steps to be added
:return:
'''
for step in xrange(num_step):
new_neighbor_vertex = (start_vertex_x, start_vertex_y)
if self._in_board(new_neighbor_vertex):
neighbor_vertex_set.append((start_vertex_x, start_vertex_y))
start_vertex_x += x_diff
start_vertex_y += y_diff
def _predict_from_nearby(self, vertex, neighbor_step = 3):
'''
step: the nearby 3 steps is considered
:vertex: position to be estimated
:neighbor_step: how many steps nearby
:return: the nearby positions of the input position
currently the nearby 3*3 grid is returned, altogether 4*8 points involved
'''
for step in range(1, neighbor_step + 1): # check the stones within the steps in range
neighbor_vertex_set = []
self._add_nearby_stones(neighbor_vertex_set, vertex[0] - step, vertex[1], 1, 1, neighbor_step)
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] + step, 1, -1, neighbor_step)
self._add_nearby_stones(neighbor_vertex_set, vertex[0] + step, vertex[1], -1, -1, neighbor_step)
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] - step, -1, 1, neighbor_step)
color_estimate = 0
for neighbor_vertex in neighbor_vertex_set:
color_estimate += self.game.board[self.game._flatten(neighbor_vertex)]
if color_estimate > 0:
return utils.BLACK
elif color_estimate < 0:
return utils.WHITE
def get_score(self, is_unknown_estimation = False): def get_score(self, is_unknown_estimation = False):
''' '''
is_unknown_estimation: whether use nearby stone to predict the unknown is_unknown_estimation: whether use nearby stone to predict the unknown
@ -170,42 +210,3 @@ class Go:
self.game.board = _board self.game.board = _board
return score return score
def _predict_from_nearby(self, vertex, neighbor_step = 3):
'''
step: the nearby 3 steps is considered
:vertex: position to be estimated
:neighbor_step: how many steps nearby
:return: the nearby positions of the input position
currently the nearby 3*3 grid is returned, altogether 4*8 points involved
'''
for step in range(1, neighbor_step + 1): # check the stones within the steps in range
neighbor_vertex_set = []
self._add_nearby_stones(neighbor_vertex_set, vertex[0] - step, vertex[1], 1, 1, neighbor_step)
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] + step, 1, -1, neighbor_step)
self._add_nearby_stones(neighbor_vertex_set, vertex[0] + step, vertex[1], -1, -1, neighbor_step)
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] - step, -1, 1, neighbor_step)
color_estimate = 0
for neighbor_vertex in neighbor_vertex_set:
color_estimate += self.game.board[self.game._flatten(neighbor_vertex)]
if color_estimate > 0:
return utils.BLACK
elif color_estimate < 0:
return utils.WHITE
def _add_nearby_stones(self, neighbor_vertex_set, start_vertex_x, start_vertex_y, x_diff, y_diff, num_step):
'''
add the nearby stones around the input vertex
:param neighbor_vertex_set: input list
:param start_vertex_x: x axis of the input vertex
:param start_vertex_y: y axis of the input vertex
:param x_diff: add x axis
:param y_diff: add y axis
:param num_step: number of steps to be added
:return:
'''
for step in xrange(num_step):
new_neighbor_vertex = (start_vertex_x, start_vertex_y)
if self._in_board(new_neighbor_vertex):
neighbor_vertex_set.append((start_vertex_x, start_vertex_y))
start_vertex_x += x_diff
start_vertex_y += y_diff

View File

@ -16,15 +16,15 @@ CORNER_OFFSET = [[-1, -1], [-1, 1], [1, 1], [1, -1]]
class GoEnv: class GoEnv:
def __init__(self, **kwargs): def __init__(self, **kwargs):
self.game = kwargs['game'] self.game = kwargs['game']
self.board = [utils.EMPTY] * (self.game.size * self.game.size) self.simulate_board = [utils.EMPTY] * (self.game.size ** 2)
self.latest_boards = deque(maxlen=8) self.simulate_latest_boards = deque(maxlen=8)
def _flatten(self, vertex): def simulate_flatten(self, vertex):
x, y = vertex x, y = vertex
return (x - 1) * self.game.size + (y - 1) return (x - 1) * self.game.size + (y - 1)
def _find_group(self, start): def _find_group(self, start):
color = self.board[self._flatten(start)] color = self.simulate_board[self.simulate_flatten(start)]
# print ("color : ", color) # print ("color : ", color)
chain = set() chain = set()
frontier = [start] frontier = [start]
@ -35,45 +35,45 @@ class GoEnv:
chain.add(current) chain.add(current)
for n in self._neighbor(current): for n in self._neighbor(current):
# print n, self._flatten(n), self.board[self._flatten(n)], # print n, self._flatten(n), self.board[self._flatten(n)],
if self.board[self._flatten(n)] == color and not n in chain: if self.simulate_board[self.simulate_flatten(n)] == color and not n in chain:
frontier.append(n) frontier.append(n)
if self.board[self._flatten(n)] == utils.EMPTY: if self.simulate_board[self.simulate_flatten(n)] == utils.EMPTY:
has_liberty = True has_liberty = True
return has_liberty, chain return has_liberty, chain
def _is_suicide(self, color, vertex): def _is_suicide(self, color, vertex):
### assume that we already take this move ### assume that we already take this move
self.board[self._flatten(vertex)] = color self.simulate_board[self.simulate_flatten(vertex)] = color
has_liberty, group = self._find_group(vertex) has_liberty, group = self._find_group(vertex)
if has_liberty: if has_liberty:
### this group still has liberty after this move, not suicide ### this group still has liberty after this move, not suicide
self.board[self._flatten(vertex)] = utils.EMPTY self.simulate_board[self.simulate_flatten(vertex)] = utils.EMPTY
return False return False
else: else:
### liberty is zero ### liberty is zero
for n in self._neighbor(vertex): for n in self._neighbor(vertex):
if self.board[self._flatten(n)] == utils.another_color(color): if self.simulate_board[self.simulate_flatten(n)] == utils.another_color(color):
opponent_liberty, group = self._find_group(n) opponent_liberty, group = self._find_group(n)
# this move is able to take opponent's stone, not suicide # this move is able to take opponent's stone, not suicide
if not opponent_liberty: if not opponent_liberty:
self.board[self._flatten(vertex)] = utils.EMPTY self.simulate_board[self.simulate_flatten(vertex)] = utils.EMPTY
return False return False
# not a take, suicide # not a take, suicide
self.board[self._flatten(vertex)] = utils.EMPTY self.simulate_board[self.simulate_flatten(vertex)] = utils.EMPTY
return True return True
def _check_global_isomorphous(self, color, vertex): def _check_global_isomorphous(self, color, vertex):
##backup ##backup
_board = copy.copy(self.board) _board = copy.copy(self.simulate_board)
self.board[self._flatten(vertex)] = color self.simulate_board[self.simulate_flatten(vertex)] = color
self._process_board(color, vertex) self._process_board(color, vertex)
if self.board in self.latest_boards: if self.simulate_board in self.simulate_latest_boards:
res = True res = True
else: else:
res = False res = False
self.board = _board self.simulate_board = _board
return res return res
def _in_board(self, vertex): def _in_board(self, vertex):
@ -105,16 +105,16 @@ class GoEnv:
def _process_board(self, color, vertex): def _process_board(self, color, vertex):
nei = self._neighbor(vertex) nei = self._neighbor(vertex)
for n in nei: for n in nei:
if self.board[self._flatten(n)] == utils.another_color(color): if self.simulate_board[self.simulate_flatten(n)] == utils.another_color(color):
has_liberty, group = self._find_group(n) has_liberty, group = self._find_group(n)
if not has_liberty: if not has_liberty:
for b in group: for b in group:
self.board[self._flatten(b)] = utils.EMPTY self.simulate_board[self.simulate_flatten(b)] = utils.EMPTY
def _is_eye(self, color, vertex): def _is_eye(self, color, vertex):
nei = self._neighbor(vertex) nei = self._neighbor(vertex)
cor = self._corner(vertex) cor = self._corner(vertex)
ncolor = {color == self.board[self._flatten(n)] for n in nei} ncolor = {color == self.simulate_board[self.simulate_flatten(n)] for n in nei}
if False in ncolor: if False in ncolor:
# print "not all neighbors are in same color with us" # print "not all neighbors are in same color with us"
return False return False
@ -123,7 +123,7 @@ class GoEnv:
# print "all neighbors are in same group and same color with us" # print "all neighbors are in same group and same color with us"
return True return True
else: else:
opponent_number = [self.board[self._flatten(c)] for c in cor].count(-color) opponent_number = [self.simulate_board[self.simulate_flatten(c)] for c in cor].count(-color)
opponent_propotion = float(opponent_number) / float(len(cor)) opponent_propotion = float(opponent_number) / float(len(cor))
if opponent_propotion < 0.5: if opponent_propotion < 0.5:
# print "few opponents, real eye" # print "few opponents, real eye"
@ -141,7 +141,7 @@ class GoEnv:
def simulate_is_valid(self, state, action): def simulate_is_valid(self, state, action):
# state is the play board, the shape is [1, 9, 9, 17] # state is the play board, the shape is [1, 9, 9, 17]
if action == self.game.size * self.game.size: if action == self.game.size ** 2:
vertex = (0, 0) vertex = (0, 0)
else: else:
vertex = (action / self.game.size + 1, action % self.game.size + 1) vertex = (action / self.game.size + 1, action % self.game.size + 1)
@ -149,17 +149,17 @@ class GoEnv:
color = utils.BLACK color = utils.BLACK
else: else:
color = utils.WHITE color = utils.WHITE
self.latest_boards.clear() self.simulate_latest_boards.clear()
for i in range(8): for i in range(8):
self.latest_boards.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist()) self.simulate_latest_boards.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist())
self.board = copy.copy(self.latest_boards[-1]) self.simulate_board = copy.copy(self.simulate_latest_boards[-1])
### in board ### in board
if not self._in_board(vertex): if not self._in_board(vertex):
return False return False
### already have stone ### already have stone
if not self.board[self._flatten(vertex)] == utils.EMPTY: if not self.simulate_board[self.simulate_flatten(vertex)] == utils.EMPTY:
# print(np.array(self.board).reshape(9, 9)) # print(np.array(self.board).reshape(9, 9))
# print(vertex) # print(vertex)
return False return False
@ -181,9 +181,9 @@ class GoEnv:
if vertex == utils.PASS: if vertex == utils.PASS:
return True return True
id_ = self._flatten(vertex) id_ = self.simulate_flatten(vertex)
if self.board[id_] == utils.EMPTY: if self.simulate_board[id_] == utils.EMPTY:
self.board[id_] = color self.simulate_board[id_] = color
return True return True
else: else:
return False return False
@ -199,11 +199,11 @@ class GoEnv:
vertex = (action % self.game.size + 1, action / self.game.size + 1) vertex = (action % self.game.size + 1, action / self.game.size + 1)
# print(vertex) # print(vertex)
# print(self.board) # print(self.board)
self.board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist() self.simulate_board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
self.do_move(color, vertex) self.do_move(color, vertex)
new_state = np.concatenate( new_state = np.concatenate(
[state[:, :, :, 1:8], (np.array(self.board) == utils.BLACK).reshape(1, self.game.size, self.game.size, 1), [state[:, :, :, 1:8], (np.array(self.simulate_board) == utils.BLACK).reshape(1, self.game.size, self.game.size, 1),
state[:, :, :, 9:16], (np.array(self.board) == utils.WHITE).reshape(1, self.game.size, self.game.size, 1), state[:, :, :, 9:16], (np.array(self.simulate_board) == utils.WHITE).reshape(1, self.game.size, self.game.size, 1),
np.array(1 - state[:, :, :, -1]).reshape(1, self.game.size, self.game.size, 1)], np.array(1 - state[:, :, :, -1]).reshape(1, self.game.size, self.game.size, 1)],
axis=3) axis=3)
return new_state, 0 return new_state, 0