Minor simplification in train_step (#1019)
This commit is contained in:
parent
522f7fbf98
commit
789340f8d6
@ -4,7 +4,6 @@ from abc import ABC, abstractmethod
|
|||||||
from collections import defaultdict, deque
|
from collections import defaultdict, deque
|
||||||
from collections.abc import Callable
|
from collections.abc import Callable
|
||||||
from dataclasses import asdict
|
from dataclasses import asdict
|
||||||
from typing import Any
|
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import tqdm
|
import tqdm
|
||||||
@ -312,7 +311,14 @@ class BaseTrainer(ABC):
|
|||||||
while t.n < t.total and not self.stop_fn_flag:
|
while t.n < t.total and not self.stop_fn_flag:
|
||||||
train_stat: CollectStatsBase
|
train_stat: CollectStatsBase
|
||||||
if self.train_collector is not None:
|
if self.train_collector is not None:
|
||||||
pbar_data_dict, train_stat, self.stop_fn_flag = self.train_step()
|
train_stat, self.stop_fn_flag = self.train_step()
|
||||||
|
pbar_data_dict = {
|
||||||
|
"env_step": str(self.env_step),
|
||||||
|
"rew": f"{self.last_rew:.2f}",
|
||||||
|
"len": str(int(self.last_len)),
|
||||||
|
"n/ep": str(train_stat.n_collected_episodes),
|
||||||
|
"n/st": str(train_stat.n_collected_steps),
|
||||||
|
}
|
||||||
t.update(train_stat.n_collected_steps)
|
t.update(train_stat.n_collected_steps)
|
||||||
if self.stop_fn_flag:
|
if self.stop_fn_flag:
|
||||||
t.set_postfix(**pbar_data_dict)
|
t.set_postfix(**pbar_data_dict)
|
||||||
@ -322,13 +328,12 @@ class BaseTrainer(ABC):
|
|||||||
assert self.buffer, "No train_collector or buffer specified"
|
assert self.buffer, "No train_collector or buffer specified"
|
||||||
train_stat = CollectStatsBase(
|
train_stat = CollectStatsBase(
|
||||||
n_collected_episodes=len(self.buffer),
|
n_collected_episodes=len(self.buffer),
|
||||||
n_collected_steps=int(self._gradient_step),
|
|
||||||
)
|
)
|
||||||
t.update()
|
t.update()
|
||||||
|
|
||||||
update_stat = self.policy_update_fn(train_stat)
|
update_stat = self.policy_update_fn(train_stat)
|
||||||
pbar_data_dict = set_numerical_fields_to_precision(pbar_data_dict)
|
pbar_data_dict = set_numerical_fields_to_precision(pbar_data_dict)
|
||||||
pbar_data_dict["gradient_step"] = self._gradient_step
|
pbar_data_dict["gradient_step"] = str(self._gradient_step)
|
||||||
|
|
||||||
t.set_postfix(**pbar_data_dict)
|
t.set_postfix(**pbar_data_dict)
|
||||||
|
|
||||||
@ -413,11 +418,19 @@ class BaseTrainer(ABC):
|
|||||||
|
|
||||||
return test_stat, stop_fn_flag
|
return test_stat, stop_fn_flag
|
||||||
|
|
||||||
def train_step(self) -> tuple[dict[str, Any], CollectStats, bool]:
|
def train_step(self) -> tuple[CollectStats, bool]:
|
||||||
"""Perform one training step."""
|
"""Perform one training step.
|
||||||
|
|
||||||
|
If test_in_train and stop_fn are set, will compute the stop_fn on the mean return of the training data.
|
||||||
|
Then, if the stop_fn is True there, will collect test data also compute the stop_fn of the mean return
|
||||||
|
on it.
|
||||||
|
Finally, if the latter is also True, will set should_stop_training to True.
|
||||||
|
|
||||||
|
:return: A tuple of the training stats and a boolean indicating whether to stop training.
|
||||||
|
"""
|
||||||
assert self.episode_per_test is not None
|
assert self.episode_per_test is not None
|
||||||
assert self.train_collector is not None
|
assert self.train_collector is not None
|
||||||
stop_fn_flag = False
|
should_stop_training = False
|
||||||
if self.train_fn:
|
if self.train_fn:
|
||||||
self.train_fn(self.epoch, self.env_step)
|
self.train_fn(self.epoch, self.env_step)
|
||||||
result = self.train_collector.collect(
|
result = self.train_collector.collect(
|
||||||
@ -439,13 +452,6 @@ class BaseTrainer(ABC):
|
|||||||
|
|
||||||
self.logger.log_train_data(asdict(result), self.env_step)
|
self.logger.log_train_data(asdict(result), self.env_step)
|
||||||
|
|
||||||
data = {
|
|
||||||
"env_step": str(self.env_step),
|
|
||||||
"rew": f"{self.last_rew:.2f}",
|
|
||||||
"len": str(int(self.last_len)),
|
|
||||||
"n/ep": str(result.n_collected_episodes),
|
|
||||||
"n/st": str(result.n_collected_steps),
|
|
||||||
}
|
|
||||||
if (
|
if (
|
||||||
result.n_collected_episodes > 0
|
result.n_collected_episodes > 0
|
||||||
and self.test_in_train
|
and self.test_in_train
|
||||||
@ -464,12 +470,12 @@ class BaseTrainer(ABC):
|
|||||||
)
|
)
|
||||||
assert test_result.returns_stat is not None # for mypy
|
assert test_result.returns_stat is not None # for mypy
|
||||||
if self.stop_fn(test_result.returns_stat.mean):
|
if self.stop_fn(test_result.returns_stat.mean):
|
||||||
stop_fn_flag = True
|
should_stop_training = True
|
||||||
self.best_reward = test_result.returns_stat.mean
|
self.best_reward = test_result.returns_stat.mean
|
||||||
self.best_reward_std = test_result.returns_stat.std
|
self.best_reward_std = test_result.returns_stat.std
|
||||||
else:
|
else:
|
||||||
self.policy.train()
|
self.policy.train()
|
||||||
return data, result, stop_fn_flag
|
return result, should_stop_training
|
||||||
|
|
||||||
# TODO: move moving average computation and logging into its own logger
|
# TODO: move moving average computation and logging into its own logger
|
||||||
# TODO: maybe think about a command line logger instead of always printing data dict
|
# TODO: maybe think about a command line logger instead of always printing data dict
|
||||||
|
Loading…
x
Reference in New Issue
Block a user