Support TRPO in high-level API and add example mujoco_trpo_hl
This commit is contained in:
parent
383a4a6083
commit
7af836bd6a
91
examples/mujoco/mujoco_trpo_hl.py
Normal file
91
examples/mujoco/mujoco_trpo_hl.py
Normal file
@ -0,0 +1,91 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import os
|
||||
from collections.abc import Sequence
|
||||
from typing import Literal
|
||||
|
||||
from jsonargparse import CLI
|
||||
|
||||
from examples.mujoco.mujoco_env import MujocoEnvFactory
|
||||
from tianshou.highlevel.config import SamplingConfig
|
||||
from tianshou.highlevel.experiment import (
|
||||
ExperimentConfig,
|
||||
TRPOExperimentBuilder,
|
||||
)
|
||||
from tianshou.highlevel.params.dist_fn import (
|
||||
DistributionFunctionFactoryIndependentGaussians,
|
||||
)
|
||||
from tianshou.highlevel.params.lr_scheduler import LRSchedulerFactoryLinear
|
||||
from tianshou.highlevel.params.policy_params import TRPOParams
|
||||
from tianshou.utils import logging
|
||||
from tianshou.utils.logging import datetime_tag
|
||||
|
||||
|
||||
def main(
|
||||
experiment_config: ExperimentConfig,
|
||||
task: str = "Ant-v3",
|
||||
buffer_size: int = 4096,
|
||||
hidden_sizes: Sequence[int] = (64, 64),
|
||||
lr: float = 1e-3,
|
||||
gamma: float = 0.99,
|
||||
epoch: int = 100,
|
||||
step_per_epoch: int = 30000,
|
||||
step_per_collect: int = 1024,
|
||||
repeat_per_collect: int = 1,
|
||||
batch_size: int = 99999,
|
||||
training_num: int = 16,
|
||||
test_num: int = 10,
|
||||
rew_norm: bool = True,
|
||||
gae_lambda: float = 0.95,
|
||||
bound_action_method: Literal["clip", "tanh"] = "clip",
|
||||
lr_decay: bool = True,
|
||||
norm_adv: bool = True,
|
||||
optim_critic_iters: int = 20,
|
||||
max_kl: float = 0.01,
|
||||
backtrack_coeff: float = 0.8,
|
||||
max_backtracks: int = 10,
|
||||
):
|
||||
log_name = os.path.join(task, "trpo", str(experiment_config.seed), datetime_tag())
|
||||
|
||||
sampling_config = SamplingConfig(
|
||||
num_epochs=epoch,
|
||||
step_per_epoch=step_per_epoch,
|
||||
batch_size=batch_size,
|
||||
num_train_envs=training_num,
|
||||
num_test_envs=test_num,
|
||||
buffer_size=buffer_size,
|
||||
step_per_collect=step_per_collect,
|
||||
repeat_per_collect=repeat_per_collect,
|
||||
)
|
||||
|
||||
env_factory = MujocoEnvFactory(task, experiment_config.seed, sampling_config)
|
||||
|
||||
experiment = (
|
||||
TRPOExperimentBuilder(env_factory, experiment_config, sampling_config)
|
||||
.with_trpo_params(
|
||||
TRPOParams(
|
||||
discount_factor=gamma,
|
||||
gae_lambda=gae_lambda,
|
||||
action_bound_method=bound_action_method,
|
||||
reward_normalization=rew_norm,
|
||||
advantage_normalization=norm_adv,
|
||||
optim_critic_iters=optim_critic_iters,
|
||||
max_kl=max_kl,
|
||||
backtrack_coeff=backtrack_coeff,
|
||||
max_backtracks=max_backtracks,
|
||||
lr=lr,
|
||||
lr_scheduler_factory=LRSchedulerFactoryLinear(sampling_config)
|
||||
if lr_decay
|
||||
else None,
|
||||
dist_fn=DistributionFunctionFactoryIndependentGaussians(),
|
||||
),
|
||||
)
|
||||
.with_actor_factory_default(hidden_sizes, continuous_unbounded=True)
|
||||
.with_critic_factory_default(hidden_sizes)
|
||||
.build()
|
||||
)
|
||||
experiment.run(log_name)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
logging.run_main(lambda: CLI(main))
|
@ -30,6 +30,7 @@ from tianshou.highlevel.params.policy_params import (
|
||||
PPOParams,
|
||||
SACParams,
|
||||
TD3Params,
|
||||
TRPOParams,
|
||||
)
|
||||
from tianshou.highlevel.params.policy_wrapper import PolicyWrapperFactory
|
||||
from tianshou.highlevel.trainer import TrainerCallbacks, TrainingContext
|
||||
@ -43,6 +44,7 @@ from tianshou.policy import (
|
||||
PPOPolicy,
|
||||
SACPolicy,
|
||||
TD3Policy,
|
||||
TRPOPolicy,
|
||||
)
|
||||
from tianshou.trainer import BaseTrainer, OffpolicyTrainer, OnpolicyTrainer
|
||||
from tianshou.utils.net import continuous, discrete
|
||||
@ -455,6 +457,30 @@ class NPGAgentFactory(ActorCriticAgentFactory[NPGParams, NPGPolicy]):
|
||||
return self.create_actor_critic_module_opt(envs, device, self.params.lr)
|
||||
|
||||
|
||||
class TRPOAgentFactory(ActorCriticAgentFactory[TRPOParams, TRPOPolicy]):
|
||||
def __init__(
|
||||
self,
|
||||
params: TRPOParams,
|
||||
sampling_config: SamplingConfig,
|
||||
actor_factory: ActorFactory,
|
||||
critic_factory: CriticFactory,
|
||||
optimizer_factory: OptimizerFactory,
|
||||
critic_use_actor_module: bool,
|
||||
):
|
||||
super().__init__(
|
||||
params,
|
||||
sampling_config,
|
||||
actor_factory,
|
||||
critic_factory,
|
||||
optimizer_factory,
|
||||
TRPOPolicy,
|
||||
critic_use_actor_module,
|
||||
)
|
||||
|
||||
def _create_actor_critic(self, envs: Environments, device: TDevice) -> ActorCriticModuleOpt:
|
||||
return self.create_actor_critic_module_opt(envs, device, self.params.lr)
|
||||
|
||||
|
||||
class DQNAgentFactory(OffpolicyAgentFactory):
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -19,6 +19,7 @@ from tianshou.highlevel.agent import (
|
||||
PPOAgentFactory,
|
||||
SACAgentFactory,
|
||||
TD3AgentFactory,
|
||||
TRPOAgentFactory,
|
||||
)
|
||||
from tianshou.highlevel.config import SamplingConfig
|
||||
from tianshou.highlevel.env import EnvFactory, Environments
|
||||
@ -39,6 +40,7 @@ from tianshou.highlevel.params.policy_params import (
|
||||
PPOParams,
|
||||
SACParams,
|
||||
TD3Params,
|
||||
TRPOParams,
|
||||
)
|
||||
from tianshou.highlevel.params.policy_wrapper import PolicyWrapperFactory
|
||||
from tianshou.highlevel.persistence import PersistableConfigProtocol
|
||||
@ -528,6 +530,38 @@ class NPGExperimentBuilder(
|
||||
)
|
||||
|
||||
|
||||
class TRPOExperimentBuilder(
|
||||
ExperimentBuilder,
|
||||
_BuilderMixinActorFactory_ContinuousGaussian,
|
||||
_BuilderMixinSingleCriticCanUseActorFactory,
|
||||
):
|
||||
def __init__(
|
||||
self,
|
||||
env_factory: EnvFactory,
|
||||
experiment_config: ExperimentConfig | None = None,
|
||||
sampling_config: SamplingConfig | None = None,
|
||||
):
|
||||
super().__init__(env_factory, experiment_config, sampling_config)
|
||||
_BuilderMixinActorFactory_ContinuousGaussian.__init__(self)
|
||||
_BuilderMixinSingleCriticCanUseActorFactory.__init__(self)
|
||||
self._params: TRPOParams = TRPOParams()
|
||||
|
||||
def with_trpo_params(self, params: TRPOParams) -> Self:
|
||||
self._params = params
|
||||
return self
|
||||
|
||||
@abstractmethod
|
||||
def _create_agent_factory(self) -> AgentFactory:
|
||||
return TRPOAgentFactory(
|
||||
self._params,
|
||||
self._sampling_config,
|
||||
self._get_actor_factory(),
|
||||
self._get_critic_factory(0),
|
||||
self._get_optim_factory(),
|
||||
self._critic_use_actor_module,
|
||||
)
|
||||
|
||||
|
||||
class DQNExperimentBuilder(
|
||||
ExperimentBuilder,
|
||||
_BuilderMixinActorFactory,
|
||||
|
@ -321,6 +321,13 @@ class NPGParams(PGParams):
|
||||
max_batchsize: int = 256
|
||||
|
||||
|
||||
@dataclass
|
||||
class TRPOParams(NPGParams):
|
||||
max_kl: float = 0.01
|
||||
backtrack_coeff: float = 0.8
|
||||
max_backtracks: int = 10
|
||||
|
||||
|
||||
@dataclass
|
||||
class ParamsMixinActorAndDualCritics(GetParamTransformersProtocol):
|
||||
actor_lr: float = 1e-3
|
||||
|
Loading…
x
Reference in New Issue
Block a user