imitation with discrete action space

This commit is contained in:
Trinkle23897 2020-04-20 11:25:20 +08:00
parent 6bf1ea644d
commit 815f3522bb
6 changed files with 81 additions and 42 deletions

View File

@ -121,7 +121,7 @@ def test_sac_with_il(args=get_args()):
net = Actor(1, args.state_shape, args.action_shape,
args.max_action, args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
il_policy = ImitationPolicy(net, optim)
il_policy = ImitationPolicy(net, optim, mode='continuous')
il_test_collector = Collector(il_policy, test_envs)
train_collector.reset()
result = offpolicy_trainer(

View File

@ -6,10 +6,10 @@ import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import A2CPolicy
from tianshou.env import VectorEnv
from tianshou.trainer import onpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.policy import A2CPolicy, ImitationPolicy
from tianshou.trainer import onpolicy_trainer, offpolicy_trainer
if __name__ == '__main__':
from net import Net, Actor, Critic
@ -23,6 +23,7 @@ def get_args():
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=3e-4)
parser.add_argument('--il-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=1000)
@ -95,7 +96,6 @@ def test_a2c(args=get_args()):
args.test_num, args.batch_size, stop_fn=stop_fn, save_fn=save_fn,
writer=writer)
assert stop_fn(result['best_reward'])
train_collector.close()
test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
@ -106,6 +106,31 @@ def test_a2c(args=get_args()):
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
# here we define an imitation collector with a trivial policy
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -300 # lower the goal
net = Net(1, args.state_shape, device=args.device)
net = Actor(net, args.action_shape).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.il_lr)
il_policy = ImitationPolicy(net, optim, mode='discrete')
il_test_collector = Collector(il_policy, test_envs)
train_collector.reset()
result = offpolicy_trainer(
il_policy, train_collector, il_test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, stop_fn=stop_fn, save_fn=save_fn, writer=writer)
assert stop_fn(result['best_reward'])
train_collector.close()
il_test_collector.close()
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
collector = Collector(il_policy, env)
result = collector.collect(n_episode=1, render=args.render)
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
collector.close()
if __name__ == '__main__':
test_a2c()

View File

@ -167,5 +167,5 @@ def test_pg(args=get_args()):
if __name__ == '__main__':
test_fn()
# test_fn()
test_pg()

View File

@ -1,5 +1,5 @@
from tianshou.policy.base import BasePolicy
from tianshou.policy.imitation import ImitationPolicy
from tianshou.policy.imitation.base import ImitationPolicy
from tianshou.policy.modelfree.dqn import DQNPolicy
from tianshou.policy.modelfree.pg import PGPolicy
from tianshou.policy.modelfree.a2c import A2CPolicy

View File

@ -1,36 +0,0 @@
import torch
import torch.nn.functional as F
from tianshou.data import Batch
from tianshou.policy import BasePolicy
class ImitationPolicy(BasePolicy):
"""Implementation of vanilla imitation learning (for continuous action space).
:param torch.nn.Module model: a model following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> a)
:param torch.optim.Optimizer optim: a torch.optim for optimizing the model.
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(self, model, optim):
super().__init__()
self.model = model
self.optim = optim
def forward(self, batch, state=None):
a, h = self.model(batch.obs, state=state, info=batch.info)
return Batch(act=a, state=h)
def learn(self, batch, **kwargs):
self.optim.zero_grad()
a = self(batch).act
a_ = torch.tensor(batch.act, dtype=torch.float, device=a.device)
loss = F.mse_loss(a, a_)
loss.backward()
self.optim.step()
return {'loss': loss.item()}

View File

@ -0,0 +1,50 @@
import torch
import torch.nn.functional as F
from tianshou.data import Batch
from tianshou.policy import BasePolicy
class ImitationPolicy(BasePolicy):
"""Implementation of vanilla imitation learning (for continuous action space).
:param torch.nn.Module model: a model following the rules in
:class:`~tianshou.policy.BasePolicy`. (s -> a)
:param torch.optim.Optimizer optim: for optimizing the model.
:param str mode: indicate the imitation type ("continuous" or "discrete"
action space), defaults to "continuous".
.. seealso::
Please refer to :class:`~tianshou.policy.BasePolicy` for more detailed
explanation.
"""
def __init__(self, model, optim, mode='continuous'):
super().__init__()
self.model = model
self.optim = optim
assert mode in ['continuous', 'discrete'], \
f'Mode {mode} is not in ["continuous", "discrete"]'
self.mode = mode
def forward(self, batch, state=None):
logits, h = self.model(batch.obs, state=state, info=batch.info)
if self.mode == 'discrete':
a = logits.max(dim=1)[1]
else:
a = logits
return Batch(logits=logits, act=a, state=h)
def learn(self, batch, **kwargs):
self.optim.zero_grad()
if self.mode == 'continuous':
a = self(batch).act
a_ = torch.tensor(batch.act, dtype=torch.float, device=a.device)
loss = F.mse_loss(a, a_)
elif self.mode == 'discrete': # classification
a = self(batch).logits
a_ = torch.tensor(batch.act, dtype=torch.long, device=a.device)
loss = F.nll_loss(a, a_)
loss.backward()
self.optim.step()
return {'loss': loss.item()}