diff --git a/README.md b/README.md index bc2414a..d07beae 100644 --- a/README.md +++ b/README.md @@ -106,6 +106,7 @@ Note: install openai/gym first to run the Atari environment; note that interface Without preprocessing and other tricks, this example will not train to any meaningful results. Codes should past two tests: individual module test and run through this example code. -## Dependency -Tensorflow (Version >= 1.4) -Gym +## Dependencies +TensorFlow (Version >= 1.4) + +gym diff --git a/examples/dqn_replay.py b/examples/dqn_replay.py new file mode 100644 index 0000000..ca2351a --- /dev/null +++ b/examples/dqn_replay.py @@ -0,0 +1,87 @@ +#!/usr/bin/env python +from __future__ import absolute_import + +import tensorflow as tf +import gym +import numpy as np +import time + +# our lib imports here! It's ok to append path in examples +import sys +sys.path.append('..') +from tianshou.core import losses +# from tianshou.data.batch import Batch +import tianshou.data.advantage_estimation as advantage_estimation +import tianshou.core.policy.dqn as policy # TODO: fix imports as zhusuan so that only need to import to policy +import tianshou.core.value_function.action_value as value_function + +import tianshou.data.replay as replay +import tianshou.data.data_collector as data_collector + + +# TODO: why this solves cartpole even without training? + + +if __name__ == '__main__': + env = gym.make('CartPole-v0') + observation_dim = env.observation_space.shape + action_dim = env.action_space.n + + clip_param = 0.2 + num_batches = 10 + batch_size = 512 + + seed = 0 + np.random.seed(seed) + tf.set_random_seed(seed) + + ### 1. build network with pure tf + observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim) + + def my_network(): + net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh) + net = tf.layers.dense(net, 32, activation=tf.nn.tanh) + + action_values = tf.layers.dense(net, action_dim, activation=None) + + return None, action_values # no policy head + + ### 2. build policy, loss, optimizer + dqn = value_function.DQN(my_network, observation_placeholder=observation_ph, weight_update=100) + pi = policy.DQN(dqn) + + dqn_loss = losses.qlearning(dqn) + + total_loss = dqn_loss + optimizer = tf.train.AdamOptimizer(1e-4) + train_op = optimizer.minimize(total_loss, var_list=dqn.trainable_variables) + + ### 3. define data collection + replay_buffer = replay() + + data_collector = data_collector(env, pi, [advantage_estimation.nstep_q_return(1, dqn)], [dqn], replay_buffer) + + ### 4. start training + config = tf.ConfigProto() + config.gpu_options.allow_growth = True + with tf.Session(config=config) as sess: + sess.run(tf.global_variables_initializer()) + + # assign actor to pi_old + pi.sync_weights() # TODO: automate this for policies with target network + + start_time = time.time() + for i in range(100): + # collect data + data_collector.collect(num_episodes=50) + + # print current return + print('Epoch {}:'.format(i)) + data_collector.statistics() + + # update network + for _ in range(num_batches): + feed_dict = data_collector.next_batch(batch_size) + sess.run(train_op, feed_dict=feed_dict) + + print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60)) diff --git a/tianshou/data/advantage_estimation.py b/tianshou/data/advantage_estimation.py index b9bf0e3..43351e1 100644 --- a/tianshou/data/advantage_estimation.py +++ b/tianshou/data/advantage_estimation.py @@ -158,4 +158,3 @@ class QLearningTarget: data['rewards'] = np.array(rewards) return data - diff --git a/tianshou/data/replay_buffer/naive.py b/tianshou/data/replay_buffer/naive.py index 5eb4dd7..a253352 100644 --- a/tianshou/data/replay_buffer/naive.py +++ b/tianshou/data/replay_buffer/naive.py @@ -3,7 +3,7 @@ import tensorflow as tf from collections import deque from math import fabs -from tianshou.data.replay_buffer.buffer import ReplayBuffer +from .buffer import ReplayBuffer class NaiveExperience(ReplayBuffer): diff --git a/tianshou/data/replay_buffer/rank_based.py b/tianshou/data/replay_buffer/rank_based.py index 0a6641f..efa9041 100644 --- a/tianshou/data/replay_buffer/rank_based.py +++ b/tianshou/data/replay_buffer/rank_based.py @@ -1,9 +1,3 @@ -#!/usr/bin/python -# -*- encoding=utf-8 -*- -# author: Ian -# e-mail: stmayue@gmail.com -# description: - import sys import math import random diff --git a/tianshou/data/replay_buffer/utils.py b/tianshou/data/replay_buffer/utils.py index 4480375..aee0fef 100644 --- a/tianshou/data/replay_buffer/utils.py +++ b/tianshou/data/replay_buffer/utils.py @@ -1,8 +1,8 @@ import sys -from tianshou.data.replay_buffer.naive import NaiveExperience -from tianshou.data.replay_buffer.proportional import PropotionalExperience -from tianshou.data.replay_buffer.rank_based import RankBasedExperience +from .naive import NaiveExperience +from .proportional import PropotionalExperience +from .rank_based import RankBasedExperience def get_replay_buffer(name, env, policy, qnet, target_qnet, conf):