Add VizDoom PPO example and results (#533)

* update vizdoom ppo example

* update README with results
This commit is contained in:
Yi Su 2022-02-24 17:33:34 -08:00 committed by GitHub
parent 23fbc3b712
commit 97df511a13
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 102 additions and 32 deletions

View File

@ -53,10 +53,6 @@ python3 replay.py maps/D4_battle2.cfg results/c51/d4.lmp
See [maps/README.md](maps/README.md)
## Algorithms
The setting is exactly the same as Atari. You can definitely try more algorithms listed in Atari example.
## Reward
1. living reward is bad
@ -64,3 +60,28 @@ The setting is exactly the same as Atari. You can definitely try more algorithms
3. negative reward for health and ammo2 is really helpful for d3/d4
4. only with positive reward for health is really helpful for d1
5. remove MOVE_BACKWARD may converge faster but the final performance may be lower
## Algorithms
The setting is exactly the same as Atari. You can definitely try more algorithms listed in Atari example.
### C51 (single run)
| task | best reward | reward curve | parameters |
| --------------------------- | ----------- | ------------------------------------- | ------------------------------------------------------------ |
| D2_navigation | 747.52 | ![](results/c51/D2_navigation_rew.png) | `python3 vizdoom_c51.py --task "D2_navigation"` |
| D3_battle | 1855.29 | ![](results/c51/D3_battle_rew.png) | `python3 vizdoom_c51.py --task "D3_battle"` |
### PPO (single run)
| task | best reward | reward curve | parameters |
| --------------------------- | ----------- | ------------------------------------- | ------------------------------------------------------------ |
| D2_navigation | 770.75 | ![](results/ppo/D2_navigation_rew.png) | `python3 vizdoom_ppo.py --task "D2_navigation"` |
| D3_battle | 320.59 | ![](results/ppo/D3_battle_rew.png) | `python3 vizdoom_ppo.py --task "D3_battle"` |
### PPO with ICM (single run)
| task | best reward | reward curve | parameters |
| --------------------------- | ----------- | ------------------------------------- | ------------------------------------------------------------ |
| D2_navigation | 844.99 | ![](results/ppo_icm/D2_navigation_rew.png) | `python3 vizdoom_ppo.py --task "D2_navigation" --icm-lr-scale 10` |
| D3_battle | 547.08 | ![](results/ppo_icm/D3_battle_rew.png) | `python3 vizdoom_ppo.py --task "D3_battle" --icm-lr-scale 10` |

Binary file not shown.

After

Width:  |  Height:  |  Size: 209 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 156 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 164 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 157 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

View File

@ -6,11 +6,12 @@ import numpy as np
import torch
from env import Env
from network import DQN
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import ShmemVectorEnv
from tianshou.policy import A2CPolicy, ICMPolicy
from tianshou.policy import ICMPolicy, PPOPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import ActorCritic
@ -21,18 +22,28 @@ def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='D2_navigation')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=2000000)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--buffer-size', type=int, default=100000)
parser.add_argument('--lr', type=float, default=0.00002)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--epoch', type=int, default=300)
parser.add_argument('--step-per-epoch', type=int, default=100000)
parser.add_argument('--episode-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--update-per-step', type=int, default=1)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[512])
parser.add_argument('--step-per-collect', type=int, default=1000)
parser.add_argument('--repeat-per-collect', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--hidden-size', type=int, default=512)
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--rew-norm', type=int, default=False)
parser.add_argument('--vf-coef', type=float, default=0.5)
parser.add_argument('--ent-coef', type=float, default=0.01)
parser.add_argument('--gae-lambda', type=float, default=0.95)
parser.add_argument('--lr-decay', type=int, default=True)
parser.add_argument('--max-grad-norm', type=float, default=0.5)
parser.add_argument('--eps-clip', type=float, default=0.2)
parser.add_argument('--dual-clip', type=float, default=None)
parser.add_argument('--value-clip', type=int, default=0)
parser.add_argument('--norm-adv', type=int, default=1)
parser.add_argument('--recompute-adv', type=int, default=0)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
@ -75,7 +86,7 @@ def get_args():
return parser.parse_args()
def test_a2c(args=get_args()):
def test_ppo(args=get_args()):
args.cfg_path = f"maps/{args.task}.cfg"
args.wad_path = f"maps/{args.task}.wad"
args.res = (args.skip_num, 84, 84)
@ -105,33 +116,65 @@ def test_a2c(args=get_args()):
test_envs.seed(args.seed)
# define model
net = DQN(
*args.state_shape, args.action_shape, device=args.device, features_only=True
*args.state_shape,
args.action_shape,
device=args.device,
features_only=True,
output_dim=args.hidden_size
)
actor = Actor(
net, args.action_shape, hidden_sizes=args.hidden_sizes, device=args.device
)
critic = Critic(net, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, device=args.device, softmax_output=False)
critic = Critic(net, device=args.device)
optim = torch.optim.Adam(ActorCritic(actor, critic).parameters(), lr=args.lr)
lr_scheduler = None
if args.lr_decay:
# decay learning rate to 0 linearly
max_update_num = np.ceil(
args.step_per_epoch / args.step_per_collect
) * args.epoch
lr_scheduler = LambdaLR(
optim, lr_lambda=lambda epoch: 1 - epoch / max_update_num
)
# define policy
dist = torch.distributions.Categorical
policy = A2CPolicy(actor, critic, optim, dist).to(args.device)
def dist(p):
return torch.distributions.Categorical(logits=p)
policy = PPOPolicy(
actor,
critic,
optim,
dist,
discount_factor=args.gamma,
gae_lambda=args.gae_lambda,
max_grad_norm=args.max_grad_norm,
vf_coef=args.vf_coef,
ent_coef=args.ent_coef,
reward_normalization=args.rew_norm,
action_scaling=False,
lr_scheduler=lr_scheduler,
action_space=env.action_space,
eps_clip=args.eps_clip,
value_clip=args.value_clip,
dual_clip=args.dual_clip,
advantage_normalization=args.norm_adv,
recompute_advantage=args.recompute_adv
).to(args.device)
if args.icm_lr_scale > 0:
feature_net = DQN(
*args.state_shape,
args.action_shape,
device=args.device,
features_only=True
features_only=True,
output_dim=args.hidden_size
)
action_dim = np.prod(args.action_shape)
feature_dim = feature_net.output_dim
icm_net = IntrinsicCuriosityModule(
feature_net.net,
feature_dim,
action_dim,
hidden_sizes=args.hidden_sizes,
device=args.device
feature_net.net, feature_dim, action_dim, device=args.device
)
icm_optim = torch.optim.adam(icm_net.parameters(), lr=args.lr)
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
policy = ICMPolicy(
policy, icm_net, icm_optim, args.icm_lr_scale, args.icm_reward_scale,
args.icm_forward_loss_weight
@ -153,7 +196,8 @@ def test_a2c(args=get_args()):
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# log
log_path = os.path.join(args.logdir, args.task, 'a2c')
log_name = 'ppo_icm' if args.icm_lr_scale > 0 else 'ppo'
log_path = os.path.join(args.logdir, args.task, log_name)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
@ -162,10 +206,15 @@ def test_a2c(args=get_args()):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return False
if env.spec.reward_threshold:
return mean_rewards >= env.spec.reward_threshold
elif 'Pong' in args.task:
return mean_rewards >= 20
else:
return False
# watch agent's performance
def watch():
# watch agent's performance
print("Setup test envs ...")
policy.eval()
test_envs.seed(args.seed)
@ -210,7 +259,7 @@ def test_a2c(args=get_args()):
args.repeat_per_collect,
args.test_num,
args.batch_size,
episode_per_collect=args.episode_per_collect,
step_per_collect=args.step_per_collect,
stop_fn=stop_fn,
save_fn=save_fn,
logger=logger,
@ -222,4 +271,4 @@ def test_a2c(args=get_args()):
if __name__ == '__main__':
test_a2c(get_args())
test_ppo(get_args())