rename variable for clarity
This commit is contained in:
parent
6a410384bb
commit
99a617a1f0
@ -29,7 +29,7 @@ class Game:
|
||||
def __init__(self, size=9, komi=6.5, checkpoint_path=None):
|
||||
self.size = size
|
||||
self.komi = komi
|
||||
self.board = [utils.EMPTY] * (self.size * self.size)
|
||||
self.board = [utils.EMPTY] * (self.size ** 2)
|
||||
self.history = []
|
||||
self.latest_boards = deque(maxlen=8)
|
||||
for _ in range(8):
|
||||
@ -54,7 +54,7 @@ class Game:
|
||||
return (x,y)
|
||||
|
||||
def clear(self):
|
||||
self.board = [utils.EMPTY] * (self.size * self.size)
|
||||
self.board = [utils.EMPTY] * (self.size ** 2)
|
||||
self.history = []
|
||||
for _ in range(8):
|
||||
self.latest_boards.append(self.board)
|
||||
@ -66,11 +66,11 @@ class Game:
|
||||
def set_komi(self, k):
|
||||
self.komi = k
|
||||
|
||||
def generate_nn_input(self, history, color):
|
||||
def generate_nn_input(self, latest_boards, color):
|
||||
state = np.zeros([1, self.size, self.size, 17])
|
||||
for i in range(8):
|
||||
state[0, :, :, i] = np.array(np.array(history[i]) == np.ones(self.size ** 2)).reshape(self.size, self.size)
|
||||
state[0, :, :, i + 8] = np.array(np.array(history[i]) == -np.ones(self.size ** 2)).reshape(self.size, self.size)
|
||||
state[0, :, :, i] = np.array(np.array(latest_boards[i]) == np.ones(self.size ** 2)).reshape(self.size, self.size)
|
||||
state[0, :, :, i + 8] = np.array(np.array(latest_boards[i]) == -np.ones(self.size ** 2)).reshape(self.size, self.size)
|
||||
if color == utils.BLACK:
|
||||
state[0, :, :, 16] = np.ones([self.size, self.size])
|
||||
if color == utils.WHITE:
|
||||
@ -78,9 +78,9 @@ class Game:
|
||||
return state
|
||||
|
||||
def strategy_gen_move(self, latest_boards, color):
|
||||
self.simulator.latest_boards = copy.copy(latest_boards)
|
||||
self.simulator.board = copy.copy(latest_boards[-1])
|
||||
nn_input = self.generate_nn_input(self.simulator.latest_boards, color)
|
||||
self.simulator.simulate_latest_boards = copy.copy(latest_boards)
|
||||
self.simulator.simulate_board = copy.copy(latest_boards[-1])
|
||||
nn_input = self.generate_nn_input(self.simulator.simulate_latest_boards, color)
|
||||
mcts = MCTS(self.simulator, self.evaluator, nn_input, self.size ** 2 + 1, inverse=True, max_step=1)
|
||||
temp = 1
|
||||
prob = mcts.root.N ** temp / np.sum(mcts.root.N ** temp)
|
||||
|
@ -28,7 +28,7 @@ class Go:
|
||||
|
||||
def _find_block(self, vertex):
|
||||
block = []
|
||||
status = [False] * (self.game.size * self.game.size)
|
||||
status = [False] * (self.game.size ** 2)
|
||||
color = self.game.board[self.game._flatten(vertex)]
|
||||
self._bfs(vertex, color, block, status)
|
||||
|
||||
@ -40,7 +40,7 @@ class Go:
|
||||
|
||||
def _find_boarder(self, vertex):
|
||||
block = []
|
||||
status = [False] * (self.game.size * self.game.size)
|
||||
status = [False] * (self.game.size ** 2)
|
||||
self._bfs(vertex, utils.EMPTY, block, status)
|
||||
border = []
|
||||
for b in block:
|
||||
@ -141,6 +141,46 @@ class Go:
|
||||
idx = [i for i,x in enumerate(self.game.board) if x == utils.EMPTY ][0]
|
||||
return self.game._deflatten(idx)
|
||||
|
||||
def _add_nearby_stones(self, neighbor_vertex_set, start_vertex_x, start_vertex_y, x_diff, y_diff, num_step):
|
||||
'''
|
||||
add the nearby stones around the input vertex
|
||||
:param neighbor_vertex_set: input list
|
||||
:param start_vertex_x: x axis of the input vertex
|
||||
:param start_vertex_y: y axis of the input vertex
|
||||
:param x_diff: add x axis
|
||||
:param y_diff: add y axis
|
||||
:param num_step: number of steps to be added
|
||||
:return:
|
||||
'''
|
||||
for step in xrange(num_step):
|
||||
new_neighbor_vertex = (start_vertex_x, start_vertex_y)
|
||||
if self._in_board(new_neighbor_vertex):
|
||||
neighbor_vertex_set.append((start_vertex_x, start_vertex_y))
|
||||
start_vertex_x += x_diff
|
||||
start_vertex_y += y_diff
|
||||
|
||||
def _predict_from_nearby(self, vertex, neighbor_step = 3):
|
||||
'''
|
||||
step: the nearby 3 steps is considered
|
||||
:vertex: position to be estimated
|
||||
:neighbor_step: how many steps nearby
|
||||
:return: the nearby positions of the input position
|
||||
currently the nearby 3*3 grid is returned, altogether 4*8 points involved
|
||||
'''
|
||||
for step in range(1, neighbor_step + 1): # check the stones within the steps in range
|
||||
neighbor_vertex_set = []
|
||||
self._add_nearby_stones(neighbor_vertex_set, vertex[0] - step, vertex[1], 1, 1, neighbor_step)
|
||||
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] + step, 1, -1, neighbor_step)
|
||||
self._add_nearby_stones(neighbor_vertex_set, vertex[0] + step, vertex[1], -1, -1, neighbor_step)
|
||||
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] - step, -1, 1, neighbor_step)
|
||||
color_estimate = 0
|
||||
for neighbor_vertex in neighbor_vertex_set:
|
||||
color_estimate += self.game.board[self.game._flatten(neighbor_vertex)]
|
||||
if color_estimate > 0:
|
||||
return utils.BLACK
|
||||
elif color_estimate < 0:
|
||||
return utils.WHITE
|
||||
|
||||
def get_score(self, is_unknown_estimation = False):
|
||||
'''
|
||||
is_unknown_estimation: whether use nearby stone to predict the unknown
|
||||
@ -170,42 +210,3 @@ class Go:
|
||||
self.game.board = _board
|
||||
return score
|
||||
|
||||
def _predict_from_nearby(self, vertex, neighbor_step = 3):
|
||||
'''
|
||||
step: the nearby 3 steps is considered
|
||||
:vertex: position to be estimated
|
||||
:neighbor_step: how many steps nearby
|
||||
:return: the nearby positions of the input position
|
||||
currently the nearby 3*3 grid is returned, altogether 4*8 points involved
|
||||
'''
|
||||
for step in range(1, neighbor_step + 1): # check the stones within the steps in range
|
||||
neighbor_vertex_set = []
|
||||
self._add_nearby_stones(neighbor_vertex_set, vertex[0] - step, vertex[1], 1, 1, neighbor_step)
|
||||
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] + step, 1, -1, neighbor_step)
|
||||
self._add_nearby_stones(neighbor_vertex_set, vertex[0] + step, vertex[1], -1, -1, neighbor_step)
|
||||
self._add_nearby_stones(neighbor_vertex_set, vertex[0], vertex[1] - step, -1, 1, neighbor_step)
|
||||
color_estimate = 0
|
||||
for neighbor_vertex in neighbor_vertex_set:
|
||||
color_estimate += self.game.board[self.game._flatten(neighbor_vertex)]
|
||||
if color_estimate > 0:
|
||||
return utils.BLACK
|
||||
elif color_estimate < 0:
|
||||
return utils.WHITE
|
||||
|
||||
def _add_nearby_stones(self, neighbor_vertex_set, start_vertex_x, start_vertex_y, x_diff, y_diff, num_step):
|
||||
'''
|
||||
add the nearby stones around the input vertex
|
||||
:param neighbor_vertex_set: input list
|
||||
:param start_vertex_x: x axis of the input vertex
|
||||
:param start_vertex_y: y axis of the input vertex
|
||||
:param x_diff: add x axis
|
||||
:param y_diff: add y axis
|
||||
:param num_step: number of steps to be added
|
||||
:return:
|
||||
'''
|
||||
for step in xrange(num_step):
|
||||
new_neighbor_vertex = (start_vertex_x, start_vertex_y)
|
||||
if self._in_board(new_neighbor_vertex):
|
||||
neighbor_vertex_set.append((start_vertex_x, start_vertex_y))
|
||||
start_vertex_x += x_diff
|
||||
start_vertex_y += y_diff
|
||||
|
@ -16,15 +16,15 @@ CORNER_OFFSET = [[-1, -1], [-1, 1], [1, 1], [1, -1]]
|
||||
class GoEnv:
|
||||
def __init__(self, **kwargs):
|
||||
self.game = kwargs['game']
|
||||
self.board = [utils.EMPTY] * (self.game.size * self.game.size)
|
||||
self.latest_boards = deque(maxlen=8)
|
||||
self.simulate_board = [utils.EMPTY] * (self.game.size ** 2)
|
||||
self.simulate_latest_boards = deque(maxlen=8)
|
||||
|
||||
def _flatten(self, vertex):
|
||||
def simulate_flatten(self, vertex):
|
||||
x, y = vertex
|
||||
return (x - 1) * self.game.size + (y - 1)
|
||||
|
||||
def _find_group(self, start):
|
||||
color = self.board[self._flatten(start)]
|
||||
color = self.simulate_board[self.simulate_flatten(start)]
|
||||
# print ("color : ", color)
|
||||
chain = set()
|
||||
frontier = [start]
|
||||
@ -35,45 +35,45 @@ class GoEnv:
|
||||
chain.add(current)
|
||||
for n in self._neighbor(current):
|
||||
# print n, self._flatten(n), self.board[self._flatten(n)],
|
||||
if self.board[self._flatten(n)] == color and not n in chain:
|
||||
if self.simulate_board[self.simulate_flatten(n)] == color and not n in chain:
|
||||
frontier.append(n)
|
||||
if self.board[self._flatten(n)] == utils.EMPTY:
|
||||
if self.simulate_board[self.simulate_flatten(n)] == utils.EMPTY:
|
||||
has_liberty = True
|
||||
return has_liberty, chain
|
||||
|
||||
def _is_suicide(self, color, vertex):
|
||||
### assume that we already take this move
|
||||
self.board[self._flatten(vertex)] = color
|
||||
self.simulate_board[self.simulate_flatten(vertex)] = color
|
||||
|
||||
has_liberty, group = self._find_group(vertex)
|
||||
if has_liberty:
|
||||
### this group still has liberty after this move, not suicide
|
||||
self.board[self._flatten(vertex)] = utils.EMPTY
|
||||
self.simulate_board[self.simulate_flatten(vertex)] = utils.EMPTY
|
||||
return False
|
||||
else:
|
||||
### liberty is zero
|
||||
for n in self._neighbor(vertex):
|
||||
if self.board[self._flatten(n)] == utils.another_color(color):
|
||||
if self.simulate_board[self.simulate_flatten(n)] == utils.another_color(color):
|
||||
opponent_liberty, group = self._find_group(n)
|
||||
# this move is able to take opponent's stone, not suicide
|
||||
if not opponent_liberty:
|
||||
self.board[self._flatten(vertex)] = utils.EMPTY
|
||||
self.simulate_board[self.simulate_flatten(vertex)] = utils.EMPTY
|
||||
return False
|
||||
# not a take, suicide
|
||||
self.board[self._flatten(vertex)] = utils.EMPTY
|
||||
self.simulate_board[self.simulate_flatten(vertex)] = utils.EMPTY
|
||||
return True
|
||||
|
||||
def _check_global_isomorphous(self, color, vertex):
|
||||
##backup
|
||||
_board = copy.copy(self.board)
|
||||
self.board[self._flatten(vertex)] = color
|
||||
_board = copy.copy(self.simulate_board)
|
||||
self.simulate_board[self.simulate_flatten(vertex)] = color
|
||||
self._process_board(color, vertex)
|
||||
if self.board in self.latest_boards:
|
||||
if self.simulate_board in self.simulate_latest_boards:
|
||||
res = True
|
||||
else:
|
||||
res = False
|
||||
|
||||
self.board = _board
|
||||
self.simulate_board = _board
|
||||
return res
|
||||
|
||||
def _in_board(self, vertex):
|
||||
@ -105,16 +105,16 @@ class GoEnv:
|
||||
def _process_board(self, color, vertex):
|
||||
nei = self._neighbor(vertex)
|
||||
for n in nei:
|
||||
if self.board[self._flatten(n)] == utils.another_color(color):
|
||||
if self.simulate_board[self.simulate_flatten(n)] == utils.another_color(color):
|
||||
has_liberty, group = self._find_group(n)
|
||||
if not has_liberty:
|
||||
for b in group:
|
||||
self.board[self._flatten(b)] = utils.EMPTY
|
||||
self.simulate_board[self.simulate_flatten(b)] = utils.EMPTY
|
||||
|
||||
def _is_eye(self, color, vertex):
|
||||
nei = self._neighbor(vertex)
|
||||
cor = self._corner(vertex)
|
||||
ncolor = {color == self.board[self._flatten(n)] for n in nei}
|
||||
ncolor = {color == self.simulate_board[self.simulate_flatten(n)] for n in nei}
|
||||
if False in ncolor:
|
||||
# print "not all neighbors are in same color with us"
|
||||
return False
|
||||
@ -123,7 +123,7 @@ class GoEnv:
|
||||
# print "all neighbors are in same group and same color with us"
|
||||
return True
|
||||
else:
|
||||
opponent_number = [self.board[self._flatten(c)] for c in cor].count(-color)
|
||||
opponent_number = [self.simulate_board[self.simulate_flatten(c)] for c in cor].count(-color)
|
||||
opponent_propotion = float(opponent_number) / float(len(cor))
|
||||
if opponent_propotion < 0.5:
|
||||
# print "few opponents, real eye"
|
||||
@ -141,7 +141,7 @@ class GoEnv:
|
||||
|
||||
def simulate_is_valid(self, state, action):
|
||||
# state is the play board, the shape is [1, 9, 9, 17]
|
||||
if action == self.game.size * self.game.size:
|
||||
if action == self.game.size ** 2:
|
||||
vertex = (0, 0)
|
||||
else:
|
||||
vertex = (action / self.game.size + 1, action % self.game.size + 1)
|
||||
@ -149,17 +149,17 @@ class GoEnv:
|
||||
color = utils.BLACK
|
||||
else:
|
||||
color = utils.WHITE
|
||||
self.latest_boards.clear()
|
||||
self.simulate_latest_boards.clear()
|
||||
for i in range(8):
|
||||
self.latest_boards.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist())
|
||||
self.board = copy.copy(self.latest_boards[-1])
|
||||
self.simulate_latest_boards.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist())
|
||||
self.simulate_board = copy.copy(self.simulate_latest_boards[-1])
|
||||
|
||||
### in board
|
||||
if not self._in_board(vertex):
|
||||
return False
|
||||
|
||||
### already have stone
|
||||
if not self.board[self._flatten(vertex)] == utils.EMPTY:
|
||||
if not self.simulate_board[self.simulate_flatten(vertex)] == utils.EMPTY:
|
||||
# print(np.array(self.board).reshape(9, 9))
|
||||
# print(vertex)
|
||||
return False
|
||||
@ -181,9 +181,9 @@ class GoEnv:
|
||||
if vertex == utils.PASS:
|
||||
return True
|
||||
|
||||
id_ = self._flatten(vertex)
|
||||
if self.board[id_] == utils.EMPTY:
|
||||
self.board[id_] = color
|
||||
id_ = self.simulate_flatten(vertex)
|
||||
if self.simulate_board[id_] == utils.EMPTY:
|
||||
self.simulate_board[id_] = color
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
@ -199,11 +199,11 @@ class GoEnv:
|
||||
vertex = (action % self.game.size + 1, action / self.game.size + 1)
|
||||
# print(vertex)
|
||||
# print(self.board)
|
||||
self.board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
|
||||
self.simulate_board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
|
||||
self.do_move(color, vertex)
|
||||
new_state = np.concatenate(
|
||||
[state[:, :, :, 1:8], (np.array(self.board) == utils.BLACK).reshape(1, self.game.size, self.game.size, 1),
|
||||
state[:, :, :, 9:16], (np.array(self.board) == utils.WHITE).reshape(1, self.game.size, self.game.size, 1),
|
||||
[state[:, :, :, 1:8], (np.array(self.simulate_board) == utils.BLACK).reshape(1, self.game.size, self.game.size, 1),
|
||||
state[:, :, :, 9:16], (np.array(self.simulate_board) == utils.WHITE).reshape(1, self.game.size, self.game.size, 1),
|
||||
np.array(1 - state[:, :, :, -1]).reshape(1, self.game.size, self.game.size, 1)],
|
||||
axis=3)
|
||||
return new_state, 0
|
||||
|
Loading…
x
Reference in New Issue
Block a user