finish design and running of ppo and actor-critic. advantage estimation module is not complete yet.
This commit is contained in:
parent
ed25bf7586
commit
9f96cc2461
@ -4,6 +4,7 @@ from __future__ import absolute_import
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import time
|
import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import gym
|
||||||
|
|
||||||
# our lib imports here! It's ok to append path in examples
|
# our lib imports here! It's ok to append path in examples
|
||||||
import sys
|
import sys
|
||||||
@ -14,16 +15,13 @@ import tianshou.data.advantage_estimation as advantage_estimation
|
|||||||
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
||||||
import tianshou.core.value_function.state_value as value_function
|
import tianshou.core.value_function.state_value as value_function
|
||||||
|
|
||||||
from rllab.envs.box2d.cartpole_env import CartpoleEnv
|
|
||||||
from rllab.envs.normalized_env import normalize
|
|
||||||
|
|
||||||
|
|
||||||
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
env = normalize(CartpoleEnv())
|
env = gym.make('CartPole-v0')
|
||||||
observation_dim = env.observation_space.shape
|
observation_dim = env.observation_space.shape
|
||||||
action_dim = env.action_space.flat_dim
|
action_dim = env.action_space.n
|
||||||
|
|
||||||
clip_param = 0.2
|
clip_param = 0.2
|
||||||
num_batches = 10
|
num_batches = 10
|
||||||
@ -41,17 +39,16 @@ if __name__ == '__main__':
|
|||||||
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
||||||
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
||||||
|
|
||||||
action_mean = tf.layers.dense(net, action_dim, activation=None)
|
action_logtis = tf.layers.dense(net, action_dim, activation=None)
|
||||||
action_logstd = tf.get_variable('action_logstd', shape=(action_dim, ))
|
|
||||||
value = tf.layers.dense(net, 1, activation=None)
|
value = tf.layers.dense(net, 1, activation=None)
|
||||||
|
|
||||||
return action_mean, action_logstd, value
|
return action_logtis, value
|
||||||
# TODO: overriding seems not able to handle shared layers, unless a new class `SharedPolicyValue`
|
# TODO: overriding seems not able to handle shared layers, unless a new class `SharedPolicyValue`
|
||||||
# maybe the most desired thing is to freely build policy and value function from any tensor?
|
# maybe the most desired thing is to freely build policy and value function from any tensor?
|
||||||
# but for now, only the outputs of the network matters
|
# but for now, only the outputs of the network matters
|
||||||
|
|
||||||
### 2. build policy, critic, loss, optimizer
|
### 2. build policy, critic, loss, optimizer
|
||||||
actor = policy.Normal(my_network, observation_placeholder=observation_ph, weight_update=1)
|
actor = policy.OnehotCategorical(my_network, observation_placeholder=observation_ph, weight_update=1)
|
||||||
critic = value_function.StateValue(my_network, observation_placeholder=observation_ph)
|
critic = value_function.StateValue(my_network, observation_placeholder=observation_ph)
|
||||||
|
|
||||||
actor_loss = losses.REINFORCE(actor)
|
actor_loss = losses.REINFORCE(actor)
|
||||||
|
@ -4,6 +4,7 @@ from __future__ import absolute_import
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import time
|
import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import gym
|
||||||
|
|
||||||
# our lib imports here! It's ok to append path in examples
|
# our lib imports here! It's ok to append path in examples
|
||||||
import sys
|
import sys
|
||||||
@ -14,16 +15,13 @@ import tianshou.data.advantage_estimation as advantage_estimation
|
|||||||
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
||||||
import tianshou.core.value_function.state_value as value_function
|
import tianshou.core.value_function.state_value as value_function
|
||||||
|
|
||||||
from rllab.envs.box2d.cartpole_env import CartpoleEnv
|
|
||||||
from rllab.envs.normalized_env import normalize
|
|
||||||
|
|
||||||
|
|
||||||
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
env = normalize(CartpoleEnv())
|
env = gym.make('CartPole-v0')
|
||||||
observation_dim = env.observation_space.shape
|
observation_dim = env.observation_space.shape
|
||||||
action_dim = env.action_space.flat_dim
|
action_dim = env.action_space.n
|
||||||
|
|
||||||
clip_param = 0.2
|
clip_param = 0.2
|
||||||
num_batches = 10
|
num_batches = 10
|
||||||
@ -40,10 +38,9 @@ if __name__ == '__main__':
|
|||||||
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
||||||
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
||||||
|
|
||||||
action_mean = tf.layers.dense(net, action_dim, activation=None)
|
action_logits = tf.layers.dense(net, action_dim, activation=None)
|
||||||
action_logstd = tf.get_variable('action_logstd', shape=(action_dim, ))
|
|
||||||
|
|
||||||
return action_mean, action_logstd, None
|
return action_logits, None
|
||||||
|
|
||||||
def my_critic():
|
def my_critic():
|
||||||
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
||||||
@ -53,11 +50,11 @@ if __name__ == '__main__':
|
|||||||
return None, value
|
return None, value
|
||||||
|
|
||||||
### 2. build policy, critic, loss, optimizer
|
### 2. build policy, critic, loss, optimizer
|
||||||
actor = policy.Normal(my_actor, observation_placeholder=observation_ph, weight_update=1)
|
print('actor and critic will share the first two layers in this case, and the third layer will cause error')
|
||||||
|
actor = policy.OnehotCategorical(my_actor, observation_placeholder=observation_ph, weight_update=1)
|
||||||
critic = value_function.StateValue(my_critic, observation_placeholder=observation_ph)
|
critic = value_function.StateValue(my_critic, observation_placeholder=observation_ph)
|
||||||
|
|
||||||
print('actor and critic will share variables in this case')
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
actor_loss = losses.vanilla_policy_gradient(actor)
|
actor_loss = losses.vanilla_policy_gradient(actor)
|
||||||
critic_loss = losses.state_value_mse(critic)
|
critic_loss = losses.state_value_mse(critic)
|
||||||
|
@ -4,6 +4,7 @@ from __future__ import absolute_import
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import time
|
import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import gym
|
||||||
|
|
||||||
# our lib imports here! It's ok to append path in examples
|
# our lib imports here! It's ok to append path in examples
|
||||||
import sys
|
import sys
|
||||||
@ -14,16 +15,13 @@ import tianshou.data.advantage_estimation as advantage_estimation
|
|||||||
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
||||||
import tianshou.core.value_function.state_value as value_function
|
import tianshou.core.value_function.state_value as value_function
|
||||||
|
|
||||||
from rllab.envs.box2d.cartpole_env import CartpoleEnv
|
|
||||||
from rllab.envs.normalized_env import normalize
|
|
||||||
|
|
||||||
|
|
||||||
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
env = normalize(CartpoleEnv())
|
env = gym.make('CartPole-v0')
|
||||||
observation_dim = env.observation_space.shape
|
observation_dim = env.observation_space.shape
|
||||||
action_dim = env.action_space.flat_dim
|
action_dim = env.action_space.n
|
||||||
|
|
||||||
clip_param = 0.2
|
clip_param = 0.2
|
||||||
num_batches = 10
|
num_batches = 10
|
||||||
@ -40,17 +38,16 @@ if __name__ == '__main__':
|
|||||||
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
||||||
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
||||||
|
|
||||||
action_mean = tf.layers.dense(net, action_dim, activation=None)
|
action_logits = tf.layers.dense(net, action_dim, activation=None)
|
||||||
action_logstd = tf.get_variable('action_logstd', shape=(action_dim, ))
|
|
||||||
|
|
||||||
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
||||||
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
||||||
value = tf.layers.dense(net, 1, activation=None)
|
value = tf.layers.dense(net, 1, activation=None)
|
||||||
|
|
||||||
return action_mean, action_logstd, value
|
return action_logits, value
|
||||||
|
|
||||||
### 2. build policy, critic, loss, optimizer
|
### 2. build policy, critic, loss, optimizer
|
||||||
actor = policy.Normal(my_network, observation_placeholder=observation_ph, weight_update=1)
|
actor = policy.OnehotCategorical(my_network, observation_placeholder=observation_ph, weight_update=1)
|
||||||
critic = value_function.StateValue(my_network, observation_placeholder=observation_ph)
|
critic = value_function.StateValue(my_network, observation_placeholder=observation_ph)
|
||||||
|
|
||||||
actor_loss = losses.REINFORCE(actor)
|
actor_loss = losses.REINFORCE(actor)
|
||||||
|
@ -2,8 +2,9 @@
|
|||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import time
|
import gym
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import time
|
||||||
|
|
||||||
# our lib imports here! It's ok to append path in examples
|
# our lib imports here! It's ok to append path in examples
|
||||||
import sys
|
import sys
|
||||||
@ -13,22 +14,17 @@ from tianshou.data.batch import Batch
|
|||||||
import tianshou.data.advantage_estimation as advantage_estimation
|
import tianshou.data.advantage_estimation as advantage_estimation
|
||||||
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
||||||
|
|
||||||
from rllab.envs.box2d.cartpole_env import CartpoleEnv
|
|
||||||
from rllab.envs.normalized_env import normalize
|
|
||||||
|
|
||||||
|
|
||||||
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
env = normalize(CartpoleEnv())
|
env = gym.make('CartPole-v0')
|
||||||
observation_dim = env.observation_space.shape
|
observation_dim = env.observation_space.shape
|
||||||
action_dim = env.action_space.flat_dim
|
action_dim = env.action_space.n
|
||||||
|
|
||||||
clip_param = 0.2
|
clip_param = 0.2
|
||||||
num_batches = 10
|
num_batches = 10
|
||||||
batch_size = 128
|
batch_size = 512
|
||||||
|
|
||||||
seed = 10
|
seed = 0
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
tf.set_random_seed(seed)
|
tf.set_random_seed(seed)
|
||||||
|
|
||||||
@ -39,11 +35,9 @@ if __name__ == '__main__':
|
|||||||
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
||||||
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
||||||
|
|
||||||
action_mean = tf.layers.dense(net, action_dim, activation=None)
|
action_logits = tf.layers.dense(net, action_dim, activation=None)
|
||||||
action_logstd = tf.get_variable('action_logstd', shape=(action_dim, ))
|
|
||||||
# value = tf.layers.dense(net, 1, activation=None)
|
|
||||||
|
|
||||||
return action_mean, action_logstd, None # None value head
|
return action_logits, None # None value head
|
||||||
|
|
||||||
# TODO: current implementation of passing function or overriding function has to return a value head
|
# TODO: current implementation of passing function or overriding function has to return a value head
|
||||||
# to allow network sharing between policy and value networks. This makes 'policy' and 'value_function'
|
# to allow network sharing between policy and value networks. This makes 'policy' and 'value_function'
|
||||||
@ -52,7 +46,7 @@ if __name__ == '__main__':
|
|||||||
# not based on passing function or overriding function.
|
# not based on passing function or overriding function.
|
||||||
|
|
||||||
### 2. build policy, loss, optimizer
|
### 2. build policy, loss, optimizer
|
||||||
pi = policy.Normal(my_policy, observation_placeholder=observation_ph, weight_update=0)
|
pi = policy.OnehotCategorical(my_policy, observation_placeholder=observation_ph, weight_update=0)
|
||||||
|
|
||||||
ppo_loss_clip = losses.ppo_clip(pi, clip_param)
|
ppo_loss_clip = losses.ppo_clip(pi, clip_param)
|
||||||
|
|
||||||
@ -75,7 +69,7 @@ if __name__ == '__main__':
|
|||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
for i in range(100):
|
for i in range(100):
|
||||||
# collect data
|
# collect data
|
||||||
training_data.collect(num_episodes=20)
|
training_data.collect(num_episodes=50)
|
||||||
|
|
||||||
# print current return
|
# print current return
|
||||||
print('Epoch {}:'.format(i))
|
print('Epoch {}:'.format(i))
|
||||||
|
@ -4,6 +4,7 @@ from __future__ import absolute_import
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import time
|
import time
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import gym
|
||||||
|
|
||||||
# our lib imports here! It's ok to append path in examples
|
# our lib imports here! It's ok to append path in examples
|
||||||
import sys
|
import sys
|
||||||
@ -13,9 +14,6 @@ from tianshou.data.batch import Batch
|
|||||||
import tianshou.data.advantage_estimation as advantage_estimation
|
import tianshou.data.advantage_estimation as advantage_estimation
|
||||||
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
||||||
|
|
||||||
from rllab.envs.box2d.cartpole_env import CartpoleEnv
|
|
||||||
from rllab.envs.normalized_env import normalize
|
|
||||||
|
|
||||||
|
|
||||||
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
||||||
# this example with batch_norm and dropout almost surely cannot improve. it just shows how to use those
|
# this example with batch_norm and dropout almost surely cannot improve. it just shows how to use those
|
||||||
@ -36,16 +34,15 @@ class MyPolicy(object):
|
|||||||
|
|
||||||
net = tf.layers.dense(net, 32, activation=tf.nn.relu)
|
net = tf.layers.dense(net, 32, activation=tf.nn.relu)
|
||||||
net = tf.layers.dropout(net, rate=1 - self.keep_prob_ph)
|
net = tf.layers.dropout(net, rate=1 - self.keep_prob_ph)
|
||||||
action_mean = tf.layers.dense(net, action_dim, activation=None)
|
action_logits = tf.layers.dense(net, action_dim, activation=None)
|
||||||
action_logstd = tf.get_variable('action_logstd', shape=(self.action_dim,), dtype=tf.float32)
|
|
||||||
|
|
||||||
return action_mean, action_logstd, None
|
return action_logits, None
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
env = normalize(CartpoleEnv())
|
env = gym.make('CartPole-v0')
|
||||||
observation_dim = env.observation_space.shape
|
observation_dim = env.observation_space.shape
|
||||||
action_dim = env.action_space.flat_dim
|
action_dim = env.action_space.n
|
||||||
|
|
||||||
# clip_param = 0.2
|
# clip_param = 0.2
|
||||||
num_batches = 10
|
num_batches = 10
|
||||||
@ -63,7 +60,7 @@ if __name__ == '__main__':
|
|||||||
my_policy = MyPolicy(observation_ph, is_training_ph, keep_prob_ph, action_dim)
|
my_policy = MyPolicy(observation_ph, is_training_ph, keep_prob_ph, action_dim)
|
||||||
|
|
||||||
### 2. build policy, loss, optimizer
|
### 2. build policy, loss, optimizer
|
||||||
pi = policy.Normal(my_policy, observation_placeholder=observation_ph, weight_update=0)
|
pi = policy.OnehotCategorical(my_policy, observation_placeholder=observation_ph, weight_update=0)
|
||||||
|
|
||||||
clip_param = tf.placeholder(tf.float32, shape=(), name='ppo_loss_clip_param')
|
clip_param = tf.placeholder(tf.float32, shape=(), name='ppo_loss_clip_param')
|
||||||
ppo_loss_clip = losses.ppo_clip(pi, clip_param)
|
ppo_loss_clip = losses.ppo_clip(pi, clip_param)
|
||||||
|
@ -2,9 +2,8 @@
|
|||||||
from __future__ import absolute_import
|
from __future__ import absolute_import
|
||||||
|
|
||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
import gym
|
|
||||||
import numpy as np
|
|
||||||
import time
|
import time
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
# our lib imports here! It's ok to append path in examples
|
# our lib imports here! It's ok to append path in examples
|
||||||
import sys
|
import sys
|
||||||
@ -14,17 +13,22 @@ from tianshou.data.batch import Batch
|
|||||||
import tianshou.data.advantage_estimation as advantage_estimation
|
import tianshou.data.advantage_estimation as advantage_estimation
|
||||||
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
|
||||||
|
|
||||||
|
from rllab.envs.box2d.cartpole_env import CartpoleEnv
|
||||||
|
from rllab.envs.normalized_env import normalize
|
||||||
|
|
||||||
|
|
||||||
|
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
env = gym.make('CartPole-v0')
|
env = normalize(CartpoleEnv())
|
||||||
observation_dim = env.observation_space.shape
|
observation_dim = env.observation_space.shape
|
||||||
action_dim = env.action_space.n
|
action_dim = env.action_space.flat_dim
|
||||||
|
|
||||||
clip_param = 0.2
|
clip_param = 0.2
|
||||||
num_batches = 10
|
num_batches = 10
|
||||||
batch_size = 512
|
batch_size = 128
|
||||||
|
|
||||||
seed = 0
|
seed = 10
|
||||||
np.random.seed(seed)
|
np.random.seed(seed)
|
||||||
tf.set_random_seed(seed)
|
tf.set_random_seed(seed)
|
||||||
|
|
||||||
@ -35,9 +39,11 @@ if __name__ == '__main__':
|
|||||||
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
|
||||||
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
|
||||||
|
|
||||||
action_logits = tf.layers.dense(net, action_dim, activation=None)
|
action_mean = tf.layers.dense(net, action_dim, activation=None)
|
||||||
|
action_logstd = tf.get_variable('action_logstd', shape=(action_dim, ))
|
||||||
|
# value = tf.layers.dense(net, 1, activation=None)
|
||||||
|
|
||||||
return action_logits, None # None value head
|
return action_mean, action_logstd, None # None value head
|
||||||
|
|
||||||
# TODO: current implementation of passing function or overriding function has to return a value head
|
# TODO: current implementation of passing function or overriding function has to return a value head
|
||||||
# to allow network sharing between policy and value networks. This makes 'policy' and 'value_function'
|
# to allow network sharing between policy and value networks. This makes 'policy' and 'value_function'
|
||||||
@ -46,7 +52,7 @@ if __name__ == '__main__':
|
|||||||
# not based on passing function or overriding function.
|
# not based on passing function or overriding function.
|
||||||
|
|
||||||
### 2. build policy, loss, optimizer
|
### 2. build policy, loss, optimizer
|
||||||
pi = policy.OnehotCategorical(my_policy, observation_placeholder=observation_ph, weight_update=0)
|
pi = policy.Normal(my_policy, observation_placeholder=observation_ph, weight_update=0)
|
||||||
|
|
||||||
ppo_loss_clip = losses.ppo_clip(pi, clip_param)
|
ppo_loss_clip = losses.ppo_clip(pi, clip_param)
|
||||||
|
|
||||||
@ -69,7 +75,7 @@ if __name__ == '__main__':
|
|||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
for i in range(100):
|
for i in range(100):
|
||||||
# collect data
|
# collect data
|
||||||
training_data.collect(num_episodes=50)
|
training_data.collect(num_episodes=20)
|
||||||
|
|
||||||
# print current return
|
# print current return
|
||||||
print('Epoch {}:'.format(i))
|
print('Epoch {}:'.format(i))
|
Loading…
x
Reference in New Issue
Block a user