add demo of ppo continuous action task
This commit is contained in:
parent
c173f7bfbc
commit
a87563b8e6
@ -26,8 +26,33 @@ class Actor(nn.Module):
|
||||
return logits, None
|
||||
|
||||
|
||||
class ActorProb(nn.Module):
|
||||
def __init__(self, layer_num, state_shape, action_shape,
|
||||
max_action, device='cpu'):
|
||||
super().__init__()
|
||||
self.device = device
|
||||
self.model = [
|
||||
nn.Linear(np.prod(state_shape), 128),
|
||||
nn.ReLU(inplace=True)]
|
||||
for i in range(layer_num):
|
||||
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
|
||||
self.model = nn.Sequential(*self.model)
|
||||
self.mu = nn.Linear(128, np.prod(action_shape))
|
||||
self.sigma = nn.Linear(128, np.prod(action_shape))
|
||||
self._max = max_action
|
||||
|
||||
def forward(self, s, **kwargs):
|
||||
s = torch.tensor(s, device=self.device, dtype=torch.float)
|
||||
batch = s.shape[0]
|
||||
s = s.view(batch, -1)
|
||||
logits = self.model(s)
|
||||
mu = self._max * torch.tanh(self.mu(logits))
|
||||
sigma = torch.exp(self.sigma(logits))
|
||||
return (mu, sigma), None
|
||||
|
||||
|
||||
class Critic(nn.Module):
|
||||
def __init__(self, layer_num, state_shape, action_shape, device='cpu'):
|
||||
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
|
||||
super().__init__()
|
||||
self.device = device
|
||||
self.model = [
|
||||
@ -38,12 +63,15 @@ class Critic(nn.Module):
|
||||
self.model += [nn.Linear(128, 1)]
|
||||
self.model = nn.Sequential(*self.model)
|
||||
|
||||
def forward(self, s, a):
|
||||
def forward(self, s, a=None):
|
||||
s = torch.tensor(s, device=self.device, dtype=torch.float)
|
||||
if isinstance(a, np.ndarray):
|
||||
a = torch.tensor(a, device=self.device, dtype=torch.float)
|
||||
batch = s.shape[0]
|
||||
s = s.view(batch, -1)
|
||||
a = a.view(batch, -1)
|
||||
logits = self.model(torch.cat([s, a], dim=1))
|
||||
if a is None:
|
||||
logits = self.model(s)
|
||||
else:
|
||||
a = a.view(batch, -1)
|
||||
logits = self.model(torch.cat([s, a], dim=1))
|
||||
return logits
|
||||
|
116
test/continuous/test_ppo.py
Normal file
116
test/continuous/test_ppo.py
Normal file
@ -0,0 +1,116 @@
|
||||
import gym
|
||||
import torch
|
||||
import pprint
|
||||
import argparse
|
||||
import numpy as np
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from tianshou.policy import PPOPolicy
|
||||
from tianshou.env import SubprocVectorEnv
|
||||
from tianshou.trainer import onpolicy_trainer
|
||||
from tianshou.data import Collector, ReplayBuffer
|
||||
|
||||
if __name__ == '__main__':
|
||||
from net import ActorProb, Critic
|
||||
else: # pytest
|
||||
from test.continuous.net import ActorProb, Critic
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--task', type=str, default='Pendulum-v0')
|
||||
parser.add_argument('--seed', type=int, default=0)
|
||||
parser.add_argument('--buffer-size', type=int, default=20000)
|
||||
parser.add_argument('--lr', type=float, default=1e-3)
|
||||
parser.add_argument('--gamma', type=float, default=0.9)
|
||||
parser.add_argument('--epoch', type=int, default=100)
|
||||
parser.add_argument('--step-per-epoch', type=int, default=1000)
|
||||
parser.add_argument('--collect-per-step', type=int, default=10)
|
||||
parser.add_argument('--repeat-per-collect', type=int, default=1)
|
||||
parser.add_argument('--batch-size', type=int, default=64)
|
||||
parser.add_argument('--layer-num', type=int, default=1)
|
||||
parser.add_argument('--training-num', type=int, default=16)
|
||||
parser.add_argument('--test-num', type=int, default=100)
|
||||
parser.add_argument('--logdir', type=str, default='log')
|
||||
parser.add_argument(
|
||||
'--device', type=str,
|
||||
default='cuda' if torch.cuda.is_available() else 'cpu')
|
||||
# ppo special
|
||||
parser.add_argument('--vf-coef', type=float, default=0.5)
|
||||
parser.add_argument('--ent-coef', type=float, default=0.0)
|
||||
parser.add_argument('--eps-clip', type=float, default=0.2)
|
||||
parser.add_argument('--max-grad-norm', type=float, default=0.5)
|
||||
args = parser.parse_known_args()[0]
|
||||
return args
|
||||
|
||||
|
||||
def _test_ppo(args=get_args()):
|
||||
# just a demo, I have not made it work :(
|
||||
env = gym.make(args.task)
|
||||
if args.task == 'Pendulum-v0':
|
||||
env.spec.reward_threshold = -250
|
||||
args.state_shape = env.observation_space.shape or env.observation_space.n
|
||||
args.action_shape = env.action_space.shape or env.action_space.n
|
||||
args.max_action = env.action_space.high[0]
|
||||
# train_envs = gym.make(args.task)
|
||||
train_envs = SubprocVectorEnv(
|
||||
[lambda: gym.make(args.task) for _ in range(args.training_num)],
|
||||
reset_after_done=True)
|
||||
# test_envs = gym.make(args.task)
|
||||
test_envs = SubprocVectorEnv(
|
||||
[lambda: gym.make(args.task) for _ in range(args.test_num)],
|
||||
reset_after_done=False)
|
||||
# seed
|
||||
np.random.seed(args.seed)
|
||||
torch.manual_seed(args.seed)
|
||||
train_envs.seed(args.seed)
|
||||
test_envs.seed(args.seed)
|
||||
# model
|
||||
actor = ActorProb(
|
||||
args.layer_num, args.state_shape, args.action_shape,
|
||||
args.max_action, args.device
|
||||
).to(args.device)
|
||||
critic = Critic(
|
||||
args.layer_num, args.state_shape, device=args.device
|
||||
).to(args.device)
|
||||
optim = torch.optim.Adam(list(
|
||||
actor.parameters()) + list(critic.parameters()), lr=args.lr)
|
||||
dist = torch.distributions.Normal
|
||||
policy = PPOPolicy(
|
||||
actor, critic, optim, dist, args.gamma,
|
||||
max_grad_norm=args.max_grad_norm,
|
||||
eps_clip=args.eps_clip,
|
||||
vf_coef=args.vf_coef,
|
||||
ent_coef=args.ent_coef,
|
||||
action_range=[env.action_space.low[0], env.action_space.high[0]])
|
||||
# collector
|
||||
train_collector = Collector(
|
||||
policy, train_envs, ReplayBuffer(args.buffer_size))
|
||||
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
|
||||
train_collector.collect(n_step=args.step_per_epoch)
|
||||
# log
|
||||
writer = SummaryWriter(args.logdir)
|
||||
|
||||
def stop_fn(x):
|
||||
return x >= env.spec.reward_threshold
|
||||
|
||||
# trainer
|
||||
result = onpolicy_trainer(
|
||||
policy, train_collector, test_collector, args.epoch,
|
||||
args.step_per_epoch, args.collect_per_step, args.repeat_per_collect,
|
||||
args.test_num, args.batch_size, stop_fn=stop_fn, writer=writer)
|
||||
assert stop_fn(result['best_reward'])
|
||||
train_collector.close()
|
||||
test_collector.close()
|
||||
if __name__ == '__main__':
|
||||
pprint.pprint(result)
|
||||
# Let's watch its performance!
|
||||
env = gym.make(args.task)
|
||||
collector = Collector(policy, env)
|
||||
result = collector.collect(n_episode=1, render=1 / 35)
|
||||
print(f'Final reward: {result["rew"]}, length: {result["len"]}')
|
||||
collector.close()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
_test_ppo()
|
Loading…
x
Reference in New Issue
Block a user