diff --git a/AlphaGo/README.md b/AlphaGo/README.md new file mode 100644 index 0000000..d21b9bd --- /dev/null +++ b/AlphaGo/README.md @@ -0,0 +1,12 @@ +# Reproduce AlphaGo Zero + +## Network.py +A reimplemented version of pv network which is presented in the nature paper. + +## code-verify: + +Connecting our own policy-value neural network with leela-zero. + +## checkpoints: + +Weights of the policy-value neural network diff --git a/AlphaGo/code-verify/Network.cpp b/AlphaGo/code-verify/Network.cpp new file mode 100644 index 0000000..6d2b8be --- /dev/null +++ b/AlphaGo/code-verify/Network.cpp @@ -0,0 +1,710 @@ +/* + This file is part of Leela Zero. + Copyright (C) 2017 Gian-Carlo Pascutto + + Leela Zero is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Leela Zero is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Leela Zero. If not, see . +*/ + +#include "config.h" +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +//#include +#include + +#include "Im2Col.h" + +#ifdef __APPLE__ +#include +#endif +#ifdef USE_MKL +#include +#endif +#ifdef USE_OPENBLAS + +#include + +#endif +#ifdef USE_OPENCL + +#include "OpenCL.h" +#include "UCTNode.h" + +#endif + +#include "SGFTree.h" +#include "SGFParser.h" +#include "Utils.h" +#include "FastBoard.h" +#include "Random.h" +#include "Network.h" +#include "GTP.h" +#include "Utils.h" + +using namespace Utils; + +// Input + residual block tower +std::vector> conv_weights; +std::vector> conv_biases; +std::vector> batchnorm_means; +std::vector> batchnorm_variances; + +// Policy head +std::vector conv_pol_w; +std::vector conv_pol_b; +std::array bn_pol_w1; +std::array bn_pol_w2; + +std::array ip_pol_w; +std::array ip_pol_b; + +// Value head +std::vector conv_val_w; +std::vector conv_val_b; +std::array bn_val_w1; +std::array bn_val_w2; + +std::array ip1_val_w; +std::array ip1_val_b; + +std::array ip2_val_w; +std::array ip2_val_b; + +void Network::benchmark(GameState *state) { + { + int BENCH_AMOUNT = 1600; + int cpus = cfg_num_threads; + int iters_per_thread = (BENCH_AMOUNT + (cpus - 1)) / cpus; + + Time start; + + ThreadGroup tg(thread_pool); + for (int i = 0; i < cpus; i++) { + tg.add_task([iters_per_thread, state]() { + GameState mystate = *state; + for (int loop = 0; loop < iters_per_thread; loop++) { + auto vec = get_scored_moves(&mystate, Ensemble::RANDOM_ROTATION); + } + }); + }; + tg.wait_all(); + + Time end; + + myprintf("%5d evaluations in %5.2f seconds -> %d n/s\n", + BENCH_AMOUNT, + (float) Time::timediff(start, end) / 100.0, + (int) ((float) BENCH_AMOUNT / ((float) Time::timediff(start, end) / 100.0))); + } +} + +void Network::initialize(void) { +#ifdef USE_OPENCL + myprintf("Initializing OpenCL\n"); + opencl.initialize(); + + // Count size of the network + myprintf("Detecting residual layers..."); + std::ifstream wtfile(cfg_weightsfile); + if (wtfile.fail()) { + myprintf("Could not open weights file: %s\n", cfg_weightsfile.c_str()); + exit(EXIT_FAILURE); + } + std::string line; + auto linecount = size_t{0}; + while (std::getline(wtfile, line)) { + // Second line of parameters are the convolution layer biases, + // so this tells us the amount of channels in the residual layers. + // (Provided they're all equally large - that's not actually required!) + if (linecount == 1) { + std::stringstream ss(line); + auto count = std::distance(std::istream_iterator(ss), + std::istream_iterator()); + myprintf("%d channels...", count); + } + linecount++; + } + // 1 input layer (4 x weights), 14 ending weights, the rest are residuals + // every residual has 8 x weight lines + auto residual_layers = linecount - (4 + 14); + if (residual_layers % 8 != 0) { + myprintf("\nInconsistent number of weights in the file.\n"); + exit(EXIT_FAILURE); + } + residual_layers /= 8; + myprintf("%d layers\nTransferring weights to GPU...", residual_layers); + + // Re-read file and process + wtfile.clear(); + wtfile.seekg(0, std::ios::beg); + + auto plain_conv_layers = 1 + (residual_layers * 2); + auto plain_conv_wts = plain_conv_layers * 4; + linecount = 0; + while (std::getline(wtfile, line)) { + std::vector weights; + float weight; + std::istringstream iss(line); + while (iss >> weight) { + weights.emplace_back(weight); + } + if (linecount < plain_conv_wts) { + if (linecount % 4 == 0) { + conv_weights.emplace_back(weights); + } else if (linecount % 4 == 1) { + conv_biases.emplace_back(weights); + } else if (linecount % 4 == 2) { + batchnorm_means.emplace_back(weights); + } else if (linecount % 4 == 3) { + batchnorm_variances.emplace_back(weights); + } + } else if (linecount == plain_conv_wts) { + conv_pol_w = std::move(weights); + } else if (linecount == plain_conv_wts + 1) { + conv_pol_b = std::move(weights); + } else if (linecount == plain_conv_wts + 2) { + std::copy(begin(weights), end(weights), begin(bn_pol_w1)); + } else if (linecount == plain_conv_wts + 3) { + std::copy(begin(weights), end(weights), begin(bn_pol_w2)); + } else if (linecount == plain_conv_wts + 4) { + std::copy(begin(weights), end(weights), begin(ip_pol_w)); + } else if (linecount == plain_conv_wts + 5) { + std::copy(begin(weights), end(weights), begin(ip_pol_b)); + } else if (linecount == plain_conv_wts + 6) { + conv_val_w = std::move(weights); + } else if (linecount == plain_conv_wts + 7) { + conv_val_b = std::move(weights); + } else if (linecount == plain_conv_wts + 8) { + std::copy(begin(weights), end(weights), begin(bn_val_w1)); + } else if (linecount == plain_conv_wts + 9) { + std::copy(begin(weights), end(weights), begin(bn_val_w2)); + } else if (linecount == plain_conv_wts + 10) { + std::copy(begin(weights), end(weights), begin(ip1_val_w)); + } else if (linecount == plain_conv_wts + 11) { + std::copy(begin(weights), end(weights), begin(ip1_val_b)); + } else if (linecount == plain_conv_wts + 12) { + std::copy(begin(weights), end(weights), begin(ip2_val_w)); + } else if (linecount == plain_conv_wts + 13) { + std::copy(begin(weights), end(weights), begin(ip2_val_b)); + } + linecount++; + } + wtfile.close(); + + // input + size_t weight_index = 0; + opencl_net.push_convolve(3, conv_weights[weight_index], + conv_biases[weight_index]); + opencl_net.push_batchnorm(361, batchnorm_means[weight_index], + batchnorm_variances[weight_index]); + weight_index++; + + // residual blocks + for (auto i = size_t{0}; i < residual_layers; i++) { + opencl_net.push_residual(3, conv_weights[weight_index], + conv_biases[weight_index], + batchnorm_means[weight_index], + batchnorm_variances[weight_index], + conv_weights[weight_index + 1], + conv_biases[weight_index + 1], + batchnorm_means[weight_index + 1], + batchnorm_variances[weight_index + 1]); + weight_index += 2; + } + myprintf("done\n"); +#endif +#ifdef USE_BLAS +#ifndef __APPLE__ +#ifdef USE_OPENBLAS + openblas_set_num_threads(1); + myprintf("BLAS Core: %s\n", openblas_get_corename()); +#endif +#ifdef USE_MKL + //mkl_set_threading_layer(MKL_THREADING_SEQUENTIAL); + mkl_set_num_threads(1); + MKLVersion Version; + mkl_get_version(&Version); + myprintf("BLAS core: MKL %s\n", Version.Processor); +#endif +#endif +#endif +} + +#ifdef USE_BLAS + +template +void convolve(const std::vector &input, + const std::vector &weights, + const std::vector &biases, + std::vector &output) { + // fixed for 19x19 + constexpr unsigned int width = 19; + constexpr unsigned int height = 19; + constexpr unsigned int spatial_out = width * height; + constexpr unsigned int filter_len = filter_size * filter_size; + + auto channels = int(weights.size() / (biases.size() * filter_len)); + unsigned int filter_dim = filter_len * channels; + + std::vector col(filter_dim * width * height); + im2col(channels, input, col); + + // Weight shape (output, input, filter_size, filter_size) + // 96 22 5 5 + // outputs[96,19x19] = weights[96,22x9] x col[22x9,19x19] + // C←αAB + βC + // M Number of rows in matrices A and C. + // N Number of columns in matrices B and C. + // K Number of columns in matrix A; number of rows in matrix B. + // lda The size of the first dimention of matrix A; if you are + // passing a matrix A[m][n], the value should be m. + // cblas_sgemm(CblasRowMajor, TransA, TransB, M, N, K, alpha, A, lda, B, + // ldb, beta, C, N); + + cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, + // M N K + outputs, spatial_out, filter_dim, + 1.0f, &weights[0], filter_dim, + &col[0], spatial_out, + 0.0f, &output[0], spatial_out); + + for (unsigned int o = 0; o < outputs; o++) { + for (unsigned int b = 0; b < spatial_out; b++) { + output[(o * spatial_out) + b] = + biases[o] + output[(o * spatial_out) + b]; + } + } +} + +template +void innerproduct(const std::vector &input, + const std::array &weights, + const std::array &biases, + std::vector &output) { + assert(B == outputs); + + cblas_sgemv(CblasRowMajor, CblasNoTrans, + // M K + outputs, inputs, + 1.0f, &weights[0], inputs, + &input[0], 1, + 0.0f, &output[0], 1); + + auto lambda_ReLU = [](float val) { + return (val > 0.0f) ? + val : 0.0f; + }; + + for (unsigned int o = 0; o < outputs; o++) { + float val = biases[o] + output[o]; + if (outputs == 256) { + val = lambda_ReLU(val); + } + output[o] = val; + } +} + +template +void batchnorm(const std::vector &input, + const std::array &means, + const std::array &variances, + std::vector &output) { + constexpr float epsilon = 1e-5f; + + auto lambda_ReLU = [](float val) { + return (val > 0.0f) ? + val : 0.0f; + }; + + for (unsigned int c = 0; c < channels; ++c) { + float mean = means[c]; + float variance = variances[c] + epsilon; + float scale_stddiv = 1.0f / std::sqrt(variance); + + float *out = &output[c * spatial_size]; + float const *in = &input[c * spatial_size]; + for (unsigned int b = 0; b < spatial_size; b++) { + out[b] = lambda_ReLU(scale_stddiv * (in[b] - mean)); + } + } +} + +#endif + +void Network::softmax(const std::vector &input, + std::vector &output, + float temperature) { + assert(&input != &output); + + float alpha = *std::max_element(input.begin(), + input.begin() + output.size()); + alpha /= temperature; + + float denom = 0.0f; + std::vector helper(output.size()); + for (size_t i = 0; i < output.size(); i++) { + float val = std::exp((input[i] / temperature) - alpha); + helper[i] = val; + denom += val; + } + for (size_t i = 0; i < output.size(); i++) { + output[i] = helper[i] / denom; + } +} + +/* magic code, only execute once, what is the mechanism? +void function() { + static const auto runOnce = [] (auto content) { std::cout << content << std::endl; return true;}; +} + */ + +std::string exec(const char* cmd) { + std::array buffer; + std::string result; + std::shared_ptr pipe(popen(cmd, "r"), pclose); + if (!pipe) throw std::runtime_error("popen() failed!"); + while (!feof(pipe.get())) { + if (fgets(buffer.data(), 128, pipe.get()) != nullptr) + result += buffer.data(); + } + return result; +} + +Network::Netresult Network::get_scored_moves( + GameState *state, Ensemble ensemble, int rotation) { + Netresult result; + if (state->board.get_boardsize() != 19) { + return result; + } + + NNPlanes planes; + gather_features(state, planes); + + /* + * tianshou_code + * writing the board information to local file + */ + //static std::once_flag plane_size_flag; + //std::call_once ( plane_size_flag, [&]{ printf("Network::get_scored_moves planses size : %d\n", planes.size());} ); + //std::call_once ( plane_content_flag, [&]{ + /* + for (int i = 0; i < board_size; ++i) { + for (int j = 0; j < board_size; ++j) { + std::cout << planes[k][i * board_size + j] << " "; + } + printf("\n"); + } + printf("======================================\n"); + */ + // } ); + static int call_number = 0; + call_number++; + std::ofstream mctsnn_file; + mctsnn_file.open("/home/yama/rl/tianshou/leela-zero/src/mcts_nn_files/board_" + std::to_string(call_number)); + const int total_count = board_size * board_size; + for (int k = 0; k < planes.size(); ++k) { + for (int i = 0; i < total_count; ++i) { + mctsnn_file << planes[k][i]; + } + mctsnn_file << '\n'; + } + mctsnn_file.close(); + + const int extended_board_size = board_size + 2; + Network::Netresult nn_res; + std::string cmd = "python /home/yama/rl/tianshou/AlphaGo/Network.py " + std::to_string(call_number); + std::string res = exec(cmd.c_str()); + //std::cout << res << std::endl; + std::string buf; // Have a buffer string + std::stringstream ss(res); // Insert the string into a stream + const int policy_size = board_size * board_size + 1; + int idx = 0; + for (int i = 0; i < extended_board_size; ++i) { + for (int j = 0; j < extended_board_size; ++j) { + if ((0 < i) && (i < board_size + 1) && (0 < j) && (j < board_size + 1)) { + ss >> buf; + nn_res.first.emplace_back(std::make_pair(std::stod(buf), idx)); + //std::cout << std::fixed << "[" << std::stod(buf) << "," << idx << "]\n"; + } + idx++; + } + } + // probability of pass + ss >> buf; + nn_res.first.emplace_back(std::make_pair(std::stod(buf), -1)); + std::cout << "tianshou nn output : \t\n"; + auto max_iterator = std::max_element(nn_res.first.begin(), nn_res.first.end()); + int argmax = std::distance(nn_res.first.begin(), max_iterator); + int line = (argmax / board_size) + 1, column = (argmax % board_size) + 1; + std::cout << "\tmove : " << argmax << " [" << line << "," << column << "]" << std::endl; + // evaluation of state value + ss >> buf; + nn_res.second = std::stod(buf); + std::cout << "\tvalue : " << nn_res.second << std::endl; + + if (ensemble == DIRECT) { + assert(rotation >= 0 && rotation <= 7); + result = get_scored_moves_internal(state, planes, rotation); + } else { + assert(ensemble == RANDOM_ROTATION); + assert(rotation == -1); + int rand_rot = Random::get_Rng()->randfix<8>(); + std::cout << "rotation : " << rand_rot << std::endl; + result = get_scored_moves_internal(state, planes, rand_rot); + } + + /* + static std::once_flag of; + std::call_once(of, [&] { } ); + for (auto ele: result.first) { + std::cout << std::fixed << "[" << ele.first << "," << ele.second << "]\n"; + } + */ + std::cout << "leela nn output : \t\n"; + max_iterator = std::max_element(result.first.begin(), result.first.end()); + + argmax = std::distance(result.first.begin(), max_iterator); + line = (argmax / board_size) + 1, column = (argmax % board_size) + 1; + std::cout << "\tmove : " << argmax << " [" << line << "," << column << "]" << std::endl; + std::cout << "\tvalue : " << result.second << std::endl; + + return nn_res; + //return result; +} + +Network::Netresult Network::get_scored_moves_internal( + GameState *state, NNPlanes &planes, int rotation) { + assert(rotation >= 0 && rotation <= 7); + constexpr int channels = INPUT_CHANNELS; + assert(channels == planes.size()); + constexpr int width = 19; + constexpr int height = 19; + constexpr int max_channels = MAX_CHANNELS; + std::vector input_data(max_channels * width * height); + std::vector output_data(max_channels * width * height); + std::vector policy_data_1(2 * width * height); + std::vector policy_data_2(2 * width * height); + std::vector value_data_1(1 * width * height); + std::vector value_data_2(1 * width * height); + std::vector policy_out((width * height) + 1); + std::vector softmax_data((width * height) + 1); + std::vector winrate_data(256); + std::vector winrate_out(1); + for (int c = 0; c < channels; ++c) { + for (int h = 0; h < height; ++h) { + for (int w = 0; w < width; ++w) { + int vtx = rotate_nn_idx(h * 19 + w, rotation); + input_data[(c * height + h) * width + w] = + (float) planes[c][vtx]; + } + } + } +#ifdef USE_OPENCL + opencl_net.forward(input_data, output_data); + // Get the moves + convolve<1, 2>(output_data, conv_pol_w, conv_pol_b, policy_data_1); + batchnorm<2, 361>(policy_data_1, bn_pol_w1, bn_pol_w2, policy_data_2); + innerproduct<2 * 361, 362>(policy_data_2, ip_pol_w, ip_pol_b, policy_out); + softmax(policy_out, softmax_data, cfg_softmax_temp); + std::vector &outputs = softmax_data; + + // Now get the score + convolve<1, 1>(output_data, conv_val_w, conv_val_b, value_data_1); + batchnorm<1, 361>(value_data_1, bn_val_w1, bn_val_w2, value_data_2); + innerproduct<361, 256>(value_data_2, ip1_val_w, ip1_val_b, winrate_data); + innerproduct<256, 1>(winrate_data, ip2_val_w, ip2_val_b, winrate_out); + + // Sigmoid + float winrate_sig = (1.0f + std::tanh(winrate_out[0])) / 2.0f; +#elif defined(USE_BLAS) && !defined(USE_OPENCL) +#error "Not implemented" + // Not implemented yet - not very useful unless you have some + // sort of Xeon Phi + softmax(output_data, softmax_data, cfg_softmax_temp); + // Move scores + std::vector& outputs = softmax_data; +#endif + std::vector result; + for (size_t idx = 0; idx < outputs.size(); idx++) { + if (idx < 19 * 19) { + auto rot_idx = rev_rotate_nn_idx(idx, rotation); + auto val = outputs[rot_idx]; + int x = idx % 19; + int y = idx / 19; + int vtx = state->board.get_vertex(x, y); + if (state->board.get_square(vtx) == FastBoard::EMPTY) { + result.emplace_back(val, vtx); + } + } else { + result.emplace_back(outputs[idx], FastBoard::PASS); + } + } + + return std::make_pair(result, winrate_sig); +} + +void Network::show_heatmap(FastState *state, Netresult &result, bool topmoves) { + auto moves = result.first; + std::vector display_map; + std::string line; + + for (unsigned int y = 0; y < 19; y++) { + for (unsigned int x = 0; x < 19; x++) { + int vtx = state->board.get_vertex(x, y); + + auto item = std::find_if(moves.cbegin(), moves.cend(), + [&vtx](scored_node const &item) { + return item.second == vtx; + }); + + float score = 0.0f; + // Non-empty squares won't be scored + if (item != moves.end()) { + score = item->first; + assert(vtx == item->second); + } + + line += boost::str(boost::format("%3d ") % int(score * 1000)); + if (x == 18) { + display_map.push_back(line); + line.clear(); + } + } + } + + for (int i = display_map.size() - 1; i >= 0; --i) { + myprintf("%s\n", display_map[i].c_str()); + } + assert(result.first.back().second == FastBoard::PASS); + int pass_score = int(result.first.back().first * 1000); + myprintf("pass: %d\n", pass_score); + myprintf("winrate: %f\n", result.second); + + if (topmoves) { + std::stable_sort(moves.rbegin(), moves.rend()); + + float cum = 0.0f; + size_t tried = 0; + while (cum < 0.85f && tried < moves.size()) { + if (moves[tried].first < 0.01f) break; + myprintf("%1.3f (%s)\n", + moves[tried].first, + state->board.move_to_text(moves[tried].second).c_str()); + cum += moves[tried].first; + tried++; + } + } +} + +void Network::gather_features(GameState *state, NNPlanes &planes) { + planes.resize(18); + const size_t our_offset = 0; + const size_t their_offset = 8; + BoardPlane &black_to_move = planes[16]; + BoardPlane &white_to_move = planes[17]; + + bool whites_move = state->get_to_move() == FastBoard::WHITE; + // tianshou_code + //std::cout << "whites_move : " << whites_move << std::endl; + if (whites_move) { + white_to_move.set(); + } else { + black_to_move.set(); + } + + // Go back in time, fill history boards + size_t backtracks = 0; + for (int h = 0; h < 8; h++) { + int tomove = state->get_to_move(); + // collect white, black occupation planes + for (int j = 0; j < 19; j++) { + for (int i = 0; i < 19; i++) { + int vtx = state->board.get_vertex(i, j); + FastBoard::square_t color = + state->board.get_square(vtx); + int idx = j * 19 + i; + if (color != FastBoard::EMPTY) { + if (color == tomove) { + planes[our_offset + h][idx] = true; + } else { + planes[their_offset + h][idx] = true; + } + } + } + } + if (!state->undo_move()) { + break; + } else { + backtracks++; + } + } + + // Now go back to present day + for (size_t h = 0; h < backtracks; h++) { + state->forward_move(); + } +} + +int Network::rev_rotate_nn_idx(const int vertex, int symmetry) { + static const int invert[] = {0, 1, 2, 3, 4, 6, 5, 7}; + assert(rotate_nn_idx(rotate_nn_idx(vertex, symmetry), invert[symmetry]) + == vertex); + return rotate_nn_idx(vertex, invert[symmetry]); +} + +int Network::rotate_nn_idx(const int vertex, int symmetry) { + assert(vertex >= 0 && vertex < 19 * 19); + assert(symmetry >= 0 && symmetry < 8); + int x = vertex % 19; + int y = vertex / 19; + int newx; + int newy; + + if (symmetry >= 4) { + std::swap(x, y); + symmetry -= 4; + } + + if (symmetry == 0) { + newx = x; + newy = y; + } else if (symmetry == 1) { + newx = x; + newy = 19 - y - 1; + } else if (symmetry == 2) { + newx = 19 - x - 1; + newy = y; + } else { + assert(symmetry == 3); + newx = 19 - x - 1; + newy = 19 - y - 1; + } + + int newvtx = (newy * 19) + newx; + assert(newvtx >= 0 && newvtx < 19 * 19); + return newvtx; +} diff --git a/AlphaGo/code-verify/Network.h b/AlphaGo/code-verify/Network.h new file mode 100644 index 0000000..82e3632 --- /dev/null +++ b/AlphaGo/code-verify/Network.h @@ -0,0 +1,73 @@ +/* + This file is part of Leela Zero. + Copyright (C) 2017 Gian-Carlo Pascutto + + Leela Zero is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + Leela Zero is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with Leela Zero. If not, see . +*/ + +#ifndef NETWORK_H_INCLUDED +#define NETWORK_H_INCLUDED + +#include "config.h" +#include +#include +#include +#include +#include + +#ifdef USE_OPENCL +#include +class UCTNode; +#endif + +#include "FastState.h" +#include "GameState.h" + +class Network { +public: + enum Ensemble { + DIRECT, RANDOM_ROTATION + }; + static const int board_size = 19; + using BoardPlane = std::bitset; + using NNPlanes = std::vector; + using scored_node = std::pair; + using Netresult = std::pair, float>; + + static Netresult get_scored_moves(GameState * state, + Ensemble ensemble, + int rotation = -1); + static constexpr int INPUT_CHANNELS = 18; + static constexpr int MAX_CHANNELS = 256; + + static void initialize(); + static void benchmark(GameState * state); + static void show_heatmap(FastState * state, Netresult & netres, bool topmoves); + static void softmax(const std::vector& input, + std::vector& output, + float temperature = 1.0f); + // tianshou_code + static void show_once(std::string hash_key) { + printf("%s\n", hash_key.c_str()); + } + +private: + static Netresult get_scored_moves_internal( + GameState * state, NNPlanes & planes, int rotation); + static void gather_features(GameState * state, NNPlanes & planes); + static int rotate_nn_idx(const int vertex, int symmetry); + static int rev_rotate_nn_idx(const int vertex, int symmetry); +}; + +#endif