Minor refactor for Batch class. (#61)
* Minor refactor for Batch class. * Fix. * Add back key sorting. Co-authored-by: Alexis Duburcq <alexis.duburcq@wandercraft.eu>
This commit is contained in:
parent
be9ce44290
commit
b5093ecb56
@ -4,7 +4,7 @@ import numpy as np
|
||||
from typing import Any, List, Union, Iterator, Optional
|
||||
|
||||
|
||||
class Batch(object):
|
||||
class Batch:
|
||||
"""Tianshou provides :class:`~tianshou.data.Batch` as the internal data
|
||||
structure to pass any kind of data to other methods, for example, a
|
||||
collector gives a :class:`~tianshou.data.Batch` to policy for learning.
|
||||
@ -80,9 +80,9 @@ class Batch(object):
|
||||
])
|
||||
elif isinstance(v, dict):
|
||||
self._meta[k] = list(v.keys())
|
||||
for k_ in v.keys():
|
||||
for k_, v_ in v.items():
|
||||
k__ = '_' + k + '@' + k_
|
||||
self.__dict__[k__] = v[k_]
|
||||
self.__dict__[k__] = v_
|
||||
else:
|
||||
self.__dict__[k] = kwargs[k]
|
||||
|
||||
@ -91,15 +91,15 @@ class Batch(object):
|
||||
if isinstance(index, str):
|
||||
return self.__getattr__(index)
|
||||
b = Batch()
|
||||
for k in self.__dict__:
|
||||
if k != '_meta' and self.__dict__[k] is not None:
|
||||
b.__dict__.update(**{k: self.__dict__[k][index]})
|
||||
for k, v in self.__dict__.items():
|
||||
if k != '_meta' and v is not None:
|
||||
b.__dict__.update(**{k: v[index]})
|
||||
b._meta = self._meta
|
||||
return b
|
||||
|
||||
def __getattr__(self, key: str) -> Union['Batch', Any]:
|
||||
"""Return self.key"""
|
||||
if key not in self._meta:
|
||||
if key not in self._meta.keys():
|
||||
if key not in self.__dict__:
|
||||
raise AttributeError(key)
|
||||
return self.__dict__[key]
|
||||
@ -128,8 +128,8 @@ class Batch(object):
|
||||
|
||||
def keys(self) -> List[str]:
|
||||
"""Return self.keys()."""
|
||||
return sorted([
|
||||
i for i in self.__dict__ if i[0] != '_'] + list(self._meta))
|
||||
return sorted(list(self._meta.keys()) +
|
||||
[k for k in self.__dict__.keys() if k[0] != '_'])
|
||||
|
||||
def values(self) -> List[Any]:
|
||||
"""Return self.values()."""
|
||||
@ -145,40 +145,36 @@ class Batch(object):
|
||||
"""Change all torch.Tensor to numpy.ndarray. This is an inplace
|
||||
operation.
|
||||
"""
|
||||
for k in self.__dict__:
|
||||
if isinstance(self.__dict__[k], torch.Tensor):
|
||||
self.__dict__[k] = self.__dict__[k].cpu().numpy()
|
||||
for k, v in self.__dict__.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
self.__dict__[k] = v.cpu().numpy()
|
||||
|
||||
def append(self, batch: 'Batch') -> None:
|
||||
"""Append a :class:`~tianshou.data.Batch` object to current batch."""
|
||||
assert isinstance(batch, Batch), 'Only append Batch is allowed!'
|
||||
for k in batch.__dict__:
|
||||
for k, v in batch.__dict__.items():
|
||||
if k == '_meta':
|
||||
self._meta.update(batch._meta)
|
||||
continue
|
||||
if batch.__dict__[k] is None:
|
||||
if v is None:
|
||||
continue
|
||||
if not hasattr(self, k) or self.__dict__[k] is None:
|
||||
self.__dict__[k] = batch.__dict__[k]
|
||||
elif isinstance(batch.__dict__[k], np.ndarray):
|
||||
self.__dict__[k] = np.concatenate([
|
||||
self.__dict__[k], batch.__dict__[k]])
|
||||
elif isinstance(batch.__dict__[k], torch.Tensor):
|
||||
self.__dict__[k] = torch.cat([
|
||||
self.__dict__[k], batch.__dict__[k]])
|
||||
elif isinstance(batch.__dict__[k], list):
|
||||
self.__dict__[k] += batch.__dict__[k]
|
||||
self.__dict__[k] = v
|
||||
elif isinstance(v, np.ndarray):
|
||||
self.__dict__[k] = np.concatenate([self.__dict__[k], v])
|
||||
elif isinstance(v, torch.Tensor):
|
||||
self.__dict__[k] = torch.cat([self.__dict__[k], v])
|
||||
elif isinstance(v, list):
|
||||
self.__dict__[k] += v
|
||||
else:
|
||||
s = 'No support for append with type' \
|
||||
+ str(type(batch.__dict__[k])) \
|
||||
+ 'in class Batch.'
|
||||
s = f'No support for append with type \
|
||||
{type(v)} in class Batch.'
|
||||
raise TypeError(s)
|
||||
|
||||
def __len__(self) -> int:
|
||||
"""Return len(self)."""
|
||||
return min([
|
||||
len(self.__dict__[k]) for k in self.__dict__
|
||||
if k != '_meta' and self.__dict__[k] is not None])
|
||||
return min([len(v) for k, v in self.__dict__.items()
|
||||
if k != '_meta' and v is not None])
|
||||
|
||||
def split(self, size: Optional[int] = None,
|
||||
shuffle: bool = True) -> Iterator['Batch']:
|
||||
@ -193,11 +189,9 @@ class Batch(object):
|
||||
length = len(self)
|
||||
if size is None:
|
||||
size = length
|
||||
temp = 0
|
||||
if shuffle:
|
||||
index = np.random.permutation(length)
|
||||
indices = np.random.permutation(length)
|
||||
else:
|
||||
index = np.arange(length)
|
||||
while temp < length:
|
||||
yield self[index[temp:temp + size]]
|
||||
temp += size
|
||||
indices = np.arange(length)
|
||||
for idx in np.arange(0, length, size):
|
||||
yield self[indices[idx:(idx + size)]]
|
||||
|
Loading…
x
Reference in New Issue
Block a user