Improve README, minor changes in procedural example
This commit is contained in:
parent
1aee41fa9c
commit
b6b2c95ac7
44
README.md
44
README.md
@ -6,10 +6,10 @@
|
||||
|
||||
[](https://pypi.org/project/tianshou/) [](https://github.com/conda-forge/tianshou-feedstock) [](https://tianshou.readthedocs.io/en/master) [](https://tianshou.readthedocs.io/zh/master/) [](https://github.com/thu-ml/tianshou/actions) [](https://codecov.io/gh/thu-ml/tianshou) [](https://github.com/thu-ml/tianshou/issues) [](https://github.com/thu-ml/tianshou/stargazers) [](https://github.com/thu-ml/tianshou/network) [](https://github.com/thu-ml/tianshou/blob/master/LICENSE)
|
||||
|
||||
> ⚠️️ **Dropped support of Gym**:
|
||||
> Tianshou no longer supports `gym`, and we recommend that you transition to
|
||||
> ⚠️️ **Dropped support for Gym**:
|
||||
> Tianshou no longer supports Gym, and we recommend that you transition to
|
||||
> [Gymnasium](http://github.com/Farama-Foundation/Gymnasium).
|
||||
> If you absolutely have to use gym, you can try using [Shimmy](https://github.com/Farama-Foundation/Shimmy)
|
||||
> If you absolutely have to use Gym, you can try using [Shimmy](https://github.com/Farama-Foundation/Shimmy)
|
||||
> (the compatibility layer), but Tianshou provides no guarantees that things will work then.
|
||||
|
||||
> ⚠️️ **Current Status**: the Tianshou master branch is currently under heavy development,
|
||||
@ -179,7 +179,7 @@ Find example scripts in the [test/](https://github.com/thu-ml/tianshou/blob/mast
|
||||
|
||||
<sup>(4): super fast APPO!</sup>
|
||||
|
||||
### High quality software engineering standard
|
||||
### High Software Engineering Standards
|
||||
|
||||
| RL Platform | Documentation | Code Coverage | Type Hints | Last Update |
|
||||
| ------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------ | ----------------------------------------------------------------------------------------------------------------- |
|
||||
@ -233,8 +233,6 @@ We shall apply the deep Q network (DQN) learning algorithm using both APIs.
|
||||
|
||||
### High-Level API
|
||||
|
||||
The high-level API requires the extra package `argparse` (by adding
|
||||
`--extras argparse`) to be installed.
|
||||
To get started, we need some imports.
|
||||
|
||||
```python
|
||||
@ -333,11 +331,15 @@ Here's a run (with the training time cut short):
|
||||
<img src="docs/_static/images/discrete_dqn_hl.gif">
|
||||
</p>
|
||||
|
||||
Find many further applications of the high-level API in the `examples/` folder;
|
||||
look for scripts ending with `_hl.py`.
|
||||
Note that most of these examples require the extra package `argparse`
|
||||
(install it by adding `--extras argparse` when invoking poetry).
|
||||
|
||||
### Procedural API
|
||||
|
||||
Let us now consider an analogous example in the procedural API.
|
||||
Find the full script from which the snippets below were derived at [test/discrete/test_dqn.py](https://github.com/thu-ml/tianshou/blob/master/test/discrete/test_dqn.py).
|
||||
Find the full script in [examples/discrete/discrete_dqn.py](https://github.com/thu-ml/tianshou/blob/master/examples/discrete/discrete_dqn.py).
|
||||
|
||||
First, import some relevant packages:
|
||||
|
||||
@ -358,24 +360,30 @@ gamma, n_step, target_freq = 0.9, 3, 320
|
||||
buffer_size = 20000
|
||||
eps_train, eps_test = 0.1, 0.05
|
||||
step_per_epoch, step_per_collect = 10000, 10
|
||||
logger = ts.utils.TensorboardLogger(SummaryWriter('log/dqn')) # TensorBoard is supported!
|
||||
# For other loggers: https://tianshou.readthedocs.io/en/master/01_tutorials/05_logger.html
|
||||
```
|
||||
|
||||
Initialize the logger:
|
||||
|
||||
```python
|
||||
logger = ts.utils.TensorboardLogger(SummaryWriter('log/dqn'))
|
||||
# For other loggers, see https://tianshou.readthedocs.io/en/master/01_tutorials/05_logger.html
|
||||
```
|
||||
|
||||
Make environments:
|
||||
|
||||
```python
|
||||
# you can also try with SubprocVectorEnv
|
||||
# You can also try SubprocVectorEnv, which will use parallelization
|
||||
train_envs = ts.env.DummyVectorEnv([lambda: gym.make(task) for _ in range(train_num)])
|
||||
test_envs = ts.env.DummyVectorEnv([lambda: gym.make(task) for _ in range(test_num)])
|
||||
```
|
||||
|
||||
Define the network:
|
||||
Create the network as well as its optimizer:
|
||||
|
||||
```python
|
||||
from tianshou.utils.net.common import Net
|
||||
# you can define other net by following the API:
|
||||
# https://tianshou.readthedocs.io/en/master/01_tutorials/00_dqn.html#build-the-network
|
||||
|
||||
# Note: You can easily define other networks.
|
||||
# See https://tianshou.readthedocs.io/en/master/01_tutorials/00_dqn.html#build-the-network
|
||||
env = gym.make(task, render_mode="human")
|
||||
state_shape = env.observation_space.shape or env.observation_space.n
|
||||
action_shape = env.action_space.shape or env.action_space.n
|
||||
@ -383,7 +391,7 @@ net = Net(state_shape=state_shape, action_shape=action_shape, hidden_sizes=[128,
|
||||
optim = torch.optim.Adam(net.parameters(), lr=lr)
|
||||
```
|
||||
|
||||
Setup policy and collectors:
|
||||
Set up the policy and collectors:
|
||||
|
||||
```python
|
||||
policy = ts.policy.DQNPolicy(
|
||||
@ -419,14 +427,14 @@ result = ts.trainer.OffpolicyTrainer(
|
||||
print(f"Finished training in {result.timing.total_time} seconds")
|
||||
```
|
||||
|
||||
Save / load the trained policy (it's exactly the same as PyTorch `nn.module`):
|
||||
Save/load the trained policy (it's exactly the same as loading a `torch.nn.module`):
|
||||
|
||||
```python
|
||||
torch.save(policy.state_dict(), 'dqn.pth')
|
||||
policy.load_state_dict(torch.load('dqn.pth'))
|
||||
```
|
||||
|
||||
Watch the performance with 35 FPS:
|
||||
Watch the agent with 35 FPS:
|
||||
|
||||
```python
|
||||
policy.eval()
|
||||
@ -435,13 +443,13 @@ collector = ts.data.Collector(policy, env, exploration_noise=True)
|
||||
collector.collect(n_episode=1, render=1 / 35)
|
||||
```
|
||||
|
||||
Look at the result saved in tensorboard: (with bash script in your terminal)
|
||||
Inspect the data saved in TensorBoard:
|
||||
|
||||
```bash
|
||||
$ tensorboard --logdir log/dqn
|
||||
```
|
||||
|
||||
You can check out the [documentation](https://tianshou.readthedocs.io) for advanced usage.
|
||||
Please read the [documentation](https://tianshou.readthedocs.io) for advanced usage.
|
||||
|
||||
## Contributing
|
||||
|
||||
|
@ -1,11 +1,8 @@
|
||||
from typing import cast
|
||||
|
||||
import gymnasium as gym
|
||||
import torch
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
import tianshou as ts
|
||||
from tianshou.utils.space_info import SpaceInfo
|
||||
|
||||
|
||||
def main() -> None:
|
||||
@ -16,22 +13,21 @@ def main() -> None:
|
||||
buffer_size = 20000
|
||||
eps_train, eps_test = 0.1, 0.05
|
||||
step_per_epoch, step_per_collect = 10000, 10
|
||||
logger = ts.utils.TensorboardLogger(SummaryWriter("log/dqn")) # TensorBoard is supported!
|
||||
# For other loggers: https://tianshou.readthedocs.io/en/master/tutorials/logger.html
|
||||
|
||||
# you can also try with SubprocVectorEnv
|
||||
logger = ts.utils.TensorboardLogger(SummaryWriter("log/dqn")) # TensorBoard is supported!
|
||||
# For other loggers, see https://tianshou.readthedocs.io/en/master/tutorials/logger.html
|
||||
|
||||
# You can also try SubprocVectorEnv, which will use parallelization
|
||||
train_envs = ts.env.DummyVectorEnv([lambda: gym.make(task) for _ in range(train_num)])
|
||||
test_envs = ts.env.DummyVectorEnv([lambda: gym.make(task) for _ in range(test_num)])
|
||||
|
||||
from tianshou.utils.net.common import Net
|
||||
|
||||
# you can define other net by following the API:
|
||||
# https://tianshou.readthedocs.io/en/master/tutorials/dqn.html#build-the-network
|
||||
# Note: You can easily define other networks.
|
||||
# See https://tianshou.readthedocs.io/en/master/01_tutorials/00_dqn.html#build-the-network
|
||||
env = gym.make(task, render_mode="human")
|
||||
env.action_space = cast(gym.spaces.Discrete, env.action_space)
|
||||
space_info = SpaceInfo.from_env(env)
|
||||
state_shape = space_info.observation_info.obs_shape
|
||||
action_shape = space_info.action_info.action_shape
|
||||
state_shape = env.observation_space.shape or env.observation_space.n
|
||||
action_shape = env.action_space.shape or env.action_space.n
|
||||
net = Net(state_shape=state_shape, action_shape=action_shape, hidden_sizes=[128, 128, 128])
|
||||
optim = torch.optim.Adam(net.parameters(), lr=lr)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user