fix ddpg
This commit is contained in:
parent
8bd8246b16
commit
c173f7bfbc
@ -22,18 +22,16 @@ def get_args():
|
|||||||
parser.add_argument('--seed', type=int, default=1626)
|
parser.add_argument('--seed', type=int, default=1626)
|
||||||
parser.add_argument('--buffer-size', type=int, default=20000)
|
parser.add_argument('--buffer-size', type=int, default=20000)
|
||||||
parser.add_argument('--actor-lr', type=float, default=1e-4)
|
parser.add_argument('--actor-lr', type=float, default=1e-4)
|
||||||
parser.add_argument('--actor-wd', type=float, default=0)
|
|
||||||
parser.add_argument('--critic-lr', type=float, default=1e-3)
|
parser.add_argument('--critic-lr', type=float, default=1e-3)
|
||||||
parser.add_argument('--critic-wd', type=float, default=1e-2)
|
|
||||||
parser.add_argument('--gamma', type=float, default=0.99)
|
parser.add_argument('--gamma', type=float, default=0.99)
|
||||||
parser.add_argument('--tau', type=float, default=0.005)
|
parser.add_argument('--tau', type=float, default=0.005)
|
||||||
parser.add_argument('--exploration-noise', type=float, default=0.1)
|
parser.add_argument('--exploration-noise', type=float, default=0.1)
|
||||||
parser.add_argument('--epoch', type=int, default=100)
|
parser.add_argument('--epoch', type=int, default=100)
|
||||||
parser.add_argument('--step-per-epoch', type=int, default=2400)
|
parser.add_argument('--step-per-epoch', type=int, default=2400)
|
||||||
parser.add_argument('--collect-per-step', type=int, default=1)
|
parser.add_argument('--collect-per-step', type=int, default=4)
|
||||||
parser.add_argument('--batch-size', type=int, default=128)
|
parser.add_argument('--batch-size', type=int, default=128)
|
||||||
parser.add_argument('--layer-num', type=int, default=1)
|
parser.add_argument('--layer-num', type=int, default=1)
|
||||||
parser.add_argument('--training-num', type=int, default=1)
|
parser.add_argument('--training-num', type=int, default=8)
|
||||||
parser.add_argument('--test-num', type=int, default=100)
|
parser.add_argument('--test-num', type=int, default=100)
|
||||||
parser.add_argument('--logdir', type=str, default='log')
|
parser.add_argument('--logdir', type=str, default='log')
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -45,6 +43,8 @@ def get_args():
|
|||||||
|
|
||||||
def test_ddpg(args=get_args()):
|
def test_ddpg(args=get_args()):
|
||||||
env = gym.make(args.task)
|
env = gym.make(args.task)
|
||||||
|
if args.task == 'Pendulum-v0':
|
||||||
|
env.spec.reward_threshold = -250
|
||||||
args.state_shape = env.observation_space.shape or env.observation_space.n
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
||||||
args.action_shape = env.action_space.shape or env.action_space.n
|
args.action_shape = env.action_space.shape or env.action_space.n
|
||||||
args.max_action = env.action_space.high[0]
|
args.max_action = env.action_space.high[0]
|
||||||
@ -66,17 +66,16 @@ def test_ddpg(args=get_args()):
|
|||||||
args.layer_num, args.state_shape, args.action_shape,
|
args.layer_num, args.state_shape, args.action_shape,
|
||||||
args.max_action, args.device
|
args.max_action, args.device
|
||||||
).to(args.device)
|
).to(args.device)
|
||||||
actor_optim = torch.optim.Adam(
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
||||||
actor.parameters(), lr=args.actor_lr, weight_decay=args.actor_wd)
|
|
||||||
critic = Critic(
|
critic = Critic(
|
||||||
args.layer_num, args.state_shape, args.action_shape, args.device
|
args.layer_num, args.state_shape, args.action_shape, args.device
|
||||||
).to(args.device)
|
).to(args.device)
|
||||||
critic_optim = torch.optim.Adam(
|
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
|
||||||
critic.parameters(), lr=args.critic_lr, weight_decay=args.critic_wd)
|
|
||||||
policy = DDPGPolicy(
|
policy = DDPGPolicy(
|
||||||
actor, actor_optim, critic, critic_optim,
|
actor, actor_optim, critic, critic_optim,
|
||||||
args.tau, args.gamma, args.exploration_noise,
|
args.tau, args.gamma, args.exploration_noise,
|
||||||
[env.action_space.low[0], env.action_space.high[0]])
|
[env.action_space.low[0], env.action_space.high[0]],
|
||||||
|
reward_normalization=True)
|
||||||
# collector
|
# collector
|
||||||
train_collector = Collector(
|
train_collector = Collector(
|
||||||
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
|
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
|
||||||
@ -85,10 +84,7 @@ def test_ddpg(args=get_args()):
|
|||||||
writer = SummaryWriter(args.logdir)
|
writer = SummaryWriter(args.logdir)
|
||||||
|
|
||||||
def stop_fn(x):
|
def stop_fn(x):
|
||||||
if args.task == 'Pendulum-v0':
|
return x >= env.spec.reward_threshold
|
||||||
return x >= -250
|
|
||||||
else:
|
|
||||||
return False
|
|
||||||
|
|
||||||
# trainer
|
# trainer
|
||||||
result = offpolicy_trainer(
|
result = offpolicy_trainer(
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
import torch
|
import torch
|
||||||
|
import numpy as np
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
|
|
||||||
@ -12,7 +13,7 @@ class DDPGPolicy(BasePolicy):
|
|||||||
|
|
||||||
def __init__(self, actor, actor_optim, critic, critic_optim,
|
def __init__(self, actor, actor_optim, critic, critic_optim,
|
||||||
tau=0.005, gamma=0.99, exploration_noise=0.1,
|
tau=0.005, gamma=0.99, exploration_noise=0.1,
|
||||||
action_range=None):
|
action_range=None, reward_normalization=True):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.actor, self.actor_old = actor, deepcopy(actor)
|
self.actor, self.actor_old = actor, deepcopy(actor)
|
||||||
self.actor_old.eval()
|
self.actor_old.eval()
|
||||||
@ -28,6 +29,8 @@ class DDPGPolicy(BasePolicy):
|
|||||||
self._eps = exploration_noise
|
self._eps = exploration_noise
|
||||||
self._range = action_range
|
self._range = action_range
|
||||||
# self.noise = OUNoise()
|
# self.noise = OUNoise()
|
||||||
|
self._rew_norm = reward_normalization
|
||||||
|
self.__eps = np.finfo(np.float32).eps.item()
|
||||||
|
|
||||||
def set_eps(self, eps):
|
def set_eps(self, eps):
|
||||||
self._eps = eps
|
self._eps = eps
|
||||||
@ -42,6 +45,9 @@ class DDPGPolicy(BasePolicy):
|
|||||||
self.actor.eval()
|
self.actor.eval()
|
||||||
self.critic.eval()
|
self.critic.eval()
|
||||||
|
|
||||||
|
def process_fn(self, batch, buffer, indice):
|
||||||
|
return batch
|
||||||
|
|
||||||
def sync_weight(self):
|
def sync_weight(self):
|
||||||
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
|
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
|
||||||
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
||||||
@ -54,12 +60,12 @@ class DDPGPolicy(BasePolicy):
|
|||||||
model = getattr(self, model)
|
model = getattr(self, model)
|
||||||
obs = getattr(batch, input)
|
obs = getattr(batch, input)
|
||||||
logits, h = model(obs, state=state, info=batch.info)
|
logits, h = model(obs, state=state, info=batch.info)
|
||||||
# noise = np.random.normal(0, self._eps, size=logits.shape)
|
|
||||||
if eps is None:
|
if eps is None:
|
||||||
eps = self._eps
|
eps = self._eps
|
||||||
logits += torch.randn(size=logits.shape, device=logits.device) * eps
|
# noise = np.random.normal(0, eps, size=logits.shape)
|
||||||
# noise = self.noise(logits.shape, self._eps)
|
# noise = self.noise(logits.shape, eps)
|
||||||
# logits += torch.tensor(noise, device=logits.device)
|
# logits += torch.tensor(noise, device=logits.device)
|
||||||
|
logits += torch.randn(size=logits.shape, device=logits.device) * eps
|
||||||
if self._range:
|
if self._range:
|
||||||
logits = logits.clamp(self._range[0], self._range[1])
|
logits = logits.clamp(self._range[0], self._range[1])
|
||||||
return Batch(act=logits, state=h)
|
return Batch(act=logits, state=h)
|
||||||
@ -68,10 +74,11 @@ class DDPGPolicy(BasePolicy):
|
|||||||
target_q = self.critic_old(batch.obs_next, self(
|
target_q = self.critic_old(batch.obs_next, self(
|
||||||
batch, model='actor_old', input='obs_next', eps=0).act)
|
batch, model='actor_old', input='obs_next', eps=0).act)
|
||||||
dev = target_q.device
|
dev = target_q.device
|
||||||
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)
|
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
|
||||||
done = torch.tensor(batch.done, dtype=torch.float, device=dev)
|
if self._rew_norm:
|
||||||
target_q = rew[:, None] + ((
|
rew = (rew - rew.mean()) / (rew.std() + self.__eps)
|
||||||
1. - done[:, None]) * self._gamma * target_q).detach()
|
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
|
||||||
|
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
|
||||||
current_q = self.critic(batch.obs, batch.act)
|
current_q = self.critic(batch.obs, batch.act)
|
||||||
critic_loss = F.mse_loss(current_q, target_q)
|
critic_loss = F.mse_loss(current_q, target_q)
|
||||||
self.critic_optim.zero_grad()
|
self.critic_optim.zero_grad()
|
||||||
|
Loading…
x
Reference in New Issue
Block a user