fix ddpg
This commit is contained in:
parent
8bd8246b16
commit
c173f7bfbc
@ -22,18 +22,16 @@ def get_args():
|
||||
parser.add_argument('--seed', type=int, default=1626)
|
||||
parser.add_argument('--buffer-size', type=int, default=20000)
|
||||
parser.add_argument('--actor-lr', type=float, default=1e-4)
|
||||
parser.add_argument('--actor-wd', type=float, default=0)
|
||||
parser.add_argument('--critic-lr', type=float, default=1e-3)
|
||||
parser.add_argument('--critic-wd', type=float, default=1e-2)
|
||||
parser.add_argument('--gamma', type=float, default=0.99)
|
||||
parser.add_argument('--tau', type=float, default=0.005)
|
||||
parser.add_argument('--exploration-noise', type=float, default=0.1)
|
||||
parser.add_argument('--epoch', type=int, default=100)
|
||||
parser.add_argument('--step-per-epoch', type=int, default=2400)
|
||||
parser.add_argument('--collect-per-step', type=int, default=1)
|
||||
parser.add_argument('--collect-per-step', type=int, default=4)
|
||||
parser.add_argument('--batch-size', type=int, default=128)
|
||||
parser.add_argument('--layer-num', type=int, default=1)
|
||||
parser.add_argument('--training-num', type=int, default=1)
|
||||
parser.add_argument('--training-num', type=int, default=8)
|
||||
parser.add_argument('--test-num', type=int, default=100)
|
||||
parser.add_argument('--logdir', type=str, default='log')
|
||||
parser.add_argument(
|
||||
@ -45,6 +43,8 @@ def get_args():
|
||||
|
||||
def test_ddpg(args=get_args()):
|
||||
env = gym.make(args.task)
|
||||
if args.task == 'Pendulum-v0':
|
||||
env.spec.reward_threshold = -250
|
||||
args.state_shape = env.observation_space.shape or env.observation_space.n
|
||||
args.action_shape = env.action_space.shape or env.action_space.n
|
||||
args.max_action = env.action_space.high[0]
|
||||
@ -66,17 +66,16 @@ def test_ddpg(args=get_args()):
|
||||
args.layer_num, args.state_shape, args.action_shape,
|
||||
args.max_action, args.device
|
||||
).to(args.device)
|
||||
actor_optim = torch.optim.Adam(
|
||||
actor.parameters(), lr=args.actor_lr, weight_decay=args.actor_wd)
|
||||
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
||||
critic = Critic(
|
||||
args.layer_num, args.state_shape, args.action_shape, args.device
|
||||
).to(args.device)
|
||||
critic_optim = torch.optim.Adam(
|
||||
critic.parameters(), lr=args.critic_lr, weight_decay=args.critic_wd)
|
||||
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
|
||||
policy = DDPGPolicy(
|
||||
actor, actor_optim, critic, critic_optim,
|
||||
args.tau, args.gamma, args.exploration_noise,
|
||||
[env.action_space.low[0], env.action_space.high[0]])
|
||||
[env.action_space.low[0], env.action_space.high[0]],
|
||||
reward_normalization=True)
|
||||
# collector
|
||||
train_collector = Collector(
|
||||
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
|
||||
@ -85,10 +84,7 @@ def test_ddpg(args=get_args()):
|
||||
writer = SummaryWriter(args.logdir)
|
||||
|
||||
def stop_fn(x):
|
||||
if args.task == 'Pendulum-v0':
|
||||
return x >= -250
|
||||
else:
|
||||
return False
|
||||
return x >= env.spec.reward_threshold
|
||||
|
||||
# trainer
|
||||
result = offpolicy_trainer(
|
||||
|
@ -1,4 +1,5 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
from copy import deepcopy
|
||||
import torch.nn.functional as F
|
||||
|
||||
@ -12,7 +13,7 @@ class DDPGPolicy(BasePolicy):
|
||||
|
||||
def __init__(self, actor, actor_optim, critic, critic_optim,
|
||||
tau=0.005, gamma=0.99, exploration_noise=0.1,
|
||||
action_range=None):
|
||||
action_range=None, reward_normalization=True):
|
||||
super().__init__()
|
||||
self.actor, self.actor_old = actor, deepcopy(actor)
|
||||
self.actor_old.eval()
|
||||
@ -28,6 +29,8 @@ class DDPGPolicy(BasePolicy):
|
||||
self._eps = exploration_noise
|
||||
self._range = action_range
|
||||
# self.noise = OUNoise()
|
||||
self._rew_norm = reward_normalization
|
||||
self.__eps = np.finfo(np.float32).eps.item()
|
||||
|
||||
def set_eps(self, eps):
|
||||
self._eps = eps
|
||||
@ -42,6 +45,9 @@ class DDPGPolicy(BasePolicy):
|
||||
self.actor.eval()
|
||||
self.critic.eval()
|
||||
|
||||
def process_fn(self, batch, buffer, indice):
|
||||
return batch
|
||||
|
||||
def sync_weight(self):
|
||||
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
|
||||
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
|
||||
@ -54,12 +60,12 @@ class DDPGPolicy(BasePolicy):
|
||||
model = getattr(self, model)
|
||||
obs = getattr(batch, input)
|
||||
logits, h = model(obs, state=state, info=batch.info)
|
||||
# noise = np.random.normal(0, self._eps, size=logits.shape)
|
||||
if eps is None:
|
||||
eps = self._eps
|
||||
logits += torch.randn(size=logits.shape, device=logits.device) * eps
|
||||
# noise = self.noise(logits.shape, self._eps)
|
||||
# noise = np.random.normal(0, eps, size=logits.shape)
|
||||
# noise = self.noise(logits.shape, eps)
|
||||
# logits += torch.tensor(noise, device=logits.device)
|
||||
logits += torch.randn(size=logits.shape, device=logits.device) * eps
|
||||
if self._range:
|
||||
logits = logits.clamp(self._range[0], self._range[1])
|
||||
return Batch(act=logits, state=h)
|
||||
@ -68,10 +74,11 @@ class DDPGPolicy(BasePolicy):
|
||||
target_q = self.critic_old(batch.obs_next, self(
|
||||
batch, model='actor_old', input='obs_next', eps=0).act)
|
||||
dev = target_q.device
|
||||
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)
|
||||
done = torch.tensor(batch.done, dtype=torch.float, device=dev)
|
||||
target_q = rew[:, None] + ((
|
||||
1. - done[:, None]) * self._gamma * target_q).detach()
|
||||
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
|
||||
if self._rew_norm:
|
||||
rew = (rew - rew.mean()) / (rew.std() + self.__eps)
|
||||
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
|
||||
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
|
||||
current_q = self.critic(batch.obs, batch.act)
|
||||
critic_loss = F.mse_loss(current_q, target_q)
|
||||
self.critic_optim.zero_grad()
|
||||
|
Loading…
x
Reference in New Issue
Block a user