This commit is contained in:
Trinkle23897 2020-03-21 15:31:31 +08:00
parent 8bd8246b16
commit c173f7bfbc
2 changed files with 24 additions and 21 deletions

View File

@ -22,18 +22,16 @@ def get_args():
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=1e-4)
parser.add_argument('--actor-wd', type=float, default=0)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--critic-wd', type=float, default=1e-2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--exploration-noise', type=float, default=0.1)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=2400)
parser.add_argument('--collect-per-step', type=int, default=1)
parser.add_argument('--collect-per-step', type=int, default=4)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
@ -45,6 +43,8 @@ def get_args():
def test_ddpg(args=get_args()):
env = gym.make(args.task)
if args.task == 'Pendulum-v0':
env.spec.reward_threshold = -250
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
@ -66,17 +66,16 @@ def test_ddpg(args=get_args()):
args.layer_num, args.state_shape, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(
actor.parameters(), lr=args.actor_lr, weight_decay=args.actor_wd)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
critic = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic_optim = torch.optim.Adam(
critic.parameters(), lr=args.critic_lr, weight_decay=args.critic_wd)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
policy = DDPGPolicy(
actor, actor_optim, critic, critic_optim,
args.tau, args.gamma, args.exploration_noise,
[env.action_space.low[0], env.action_space.high[0]])
[env.action_space.low[0], env.action_space.high[0]],
reward_normalization=True)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
@ -85,10 +84,7 @@ def test_ddpg(args=get_args()):
writer = SummaryWriter(args.logdir)
def stop_fn(x):
if args.task == 'Pendulum-v0':
return x >= -250
else:
return False
return x >= env.spec.reward_threshold
# trainer
result = offpolicy_trainer(

View File

@ -1,4 +1,5 @@
import torch
import numpy as np
from copy import deepcopy
import torch.nn.functional as F
@ -12,7 +13,7 @@ class DDPGPolicy(BasePolicy):
def __init__(self, actor, actor_optim, critic, critic_optim,
tau=0.005, gamma=0.99, exploration_noise=0.1,
action_range=None):
action_range=None, reward_normalization=True):
super().__init__()
self.actor, self.actor_old = actor, deepcopy(actor)
self.actor_old.eval()
@ -28,6 +29,8 @@ class DDPGPolicy(BasePolicy):
self._eps = exploration_noise
self._range = action_range
# self.noise = OUNoise()
self._rew_norm = reward_normalization
self.__eps = np.finfo(np.float32).eps.item()
def set_eps(self, eps):
self._eps = eps
@ -42,6 +45,9 @@ class DDPGPolicy(BasePolicy):
self.actor.eval()
self.critic.eval()
def process_fn(self, batch, buffer, indice):
return batch
def sync_weight(self):
for o, n in zip(self.actor_old.parameters(), self.actor.parameters()):
o.data.copy_(o.data * (1 - self._tau) + n.data * self._tau)
@ -54,12 +60,12 @@ class DDPGPolicy(BasePolicy):
model = getattr(self, model)
obs = getattr(batch, input)
logits, h = model(obs, state=state, info=batch.info)
# noise = np.random.normal(0, self._eps, size=logits.shape)
if eps is None:
eps = self._eps
logits += torch.randn(size=logits.shape, device=logits.device) * eps
# noise = self.noise(logits.shape, self._eps)
# noise = np.random.normal(0, eps, size=logits.shape)
# noise = self.noise(logits.shape, eps)
# logits += torch.tensor(noise, device=logits.device)
logits += torch.randn(size=logits.shape, device=logits.device) * eps
if self._range:
logits = logits.clamp(self._range[0], self._range[1])
return Batch(act=logits, state=h)
@ -68,10 +74,11 @@ class DDPGPolicy(BasePolicy):
target_q = self.critic_old(batch.obs_next, self(
batch, model='actor_old', input='obs_next', eps=0).act)
dev = target_q.device
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)
done = torch.tensor(batch.done, dtype=torch.float, device=dev)
target_q = rew[:, None] + ((
1. - done[:, None]) * self._gamma * target_q).detach()
rew = torch.tensor(batch.rew, dtype=torch.float, device=dev)[:, None]
if self._rew_norm:
rew = (rew - rew.mean()) / (rew.std() + self.__eps)
done = torch.tensor(batch.done, dtype=torch.float, device=dev)[:, None]
target_q = rew + ((1. - done) * self._gamma * target_q).detach()
current_q = self.critic(batch.obs, batch.act)
critic_loss = F.mse_loss(current_q, target_q)
self.critic_optim.zero_grad()