merge Go and GoEnv finallygit status!

This commit is contained in:
Dong Yan 2017-12-20 01:14:05 +08:00
parent d1af137686
commit c2b46c44e7
5 changed files with 108 additions and 217 deletions

View File

@ -183,7 +183,7 @@ class GTPEngine():
return 'unknown player', False
def cmd_get_score(self, args, **kwargs):
return self._game.executor.executor_get_score(), None
return self._game.game_engine.executor_get_score(), None
def cmd_show_board(self, args, **kwargs):
return self._game.board, True

View File

@ -9,16 +9,13 @@ import utils
import copy
import tensorflow as tf
import numpy as np
import sys
import sys, os
import go
import network_small
import strategy
from collections import deque
sys.path.append(os.path.join(os.path.dirname(__file__), os.path.pardir))
from tianshou.core.mcts.mcts import MCTS
import Network
#from strategy import strategy
class Game:
'''
Load the real game and trained weights.
@ -34,15 +31,11 @@ class Game:
self.latest_boards = deque(maxlen=8)
for _ in range(8):
self.latest_boards.append(self.board)
self.executor = go.Go(game=self)
#self.strategy = strategy(checkpoint_path)
self.simulator = strategy.GoEnv(game=self)
self.net = network_small.Network()
self.sess = self.net.forward(checkpoint_path)
self.evaluator = lambda state: self.sess.run([tf.nn.softmax(self.net.p), self.net.v],
feed_dict={self.net.x: state, self.net.is_training: False})
self.game_engine = go.Go(game=self)
def _flatten(self, vertex):
x, y = vertex
@ -79,10 +72,10 @@ class Game:
def think(self, latest_boards, color):
# TODO : using copy is right, or should we change to deepcopy?
self.simulator.simulate_latest_boards = copy.copy(latest_boards)
self.simulator.simulate_board = copy.copy(latest_boards[-1])
nn_input = self.generate_nn_input(self.simulator.simulate_latest_boards, color)
mcts = MCTS(self.simulator, self.evaluator, nn_input, self.size ** 2 + 1, inverse=True, max_step=1)
self.game_engine.simulate_latest_boards = copy.copy(latest_boards)
self.game_engine.simulate_board = copy.copy(latest_boards[-1])
nn_input = self.generate_nn_input(self.game_engine.simulate_latest_boards, color)
mcts = MCTS(self.game_engine, self.evaluator, nn_input, self.size ** 2 + 1, inverse=True, max_step=1)
temp = 1
prob = mcts.root.N ** temp / np.sum(mcts.root.N ** temp)
choice = np.random.choice(self.size ** 2 + 1, 1, p=prob).tolist()[0]
@ -96,7 +89,7 @@ class Game:
# this function can be called directly to play the opponent's move
if vertex == utils.PASS:
return True
res = self.executor.executor_do_move(color, vertex)
res = self.game_engine.executor_do_move(color, vertex)
return res
def think_play_move(self, color):

View File

@ -1,7 +1,7 @@
from __future__ import print_function
import utils
import copy
import sys
import numpy as np
from collections import deque
'''
@ -12,10 +12,13 @@ Settings of the Go game.
'''
NEIGHBOR_OFFSET = [[1, 0], [-1, 0], [0, -1], [0, 1]]
CORNER_OFFSET = [[-1, -1], [-1, 1], [1, 1], [1, -1]]
class Go:
def __init__(self, **kwargs):
self.game = kwargs['game']
self.simulate_board = [utils.EMPTY] * (self.game.size ** 2)
self.simulate_latest_boards = deque(maxlen=8)
def _in_board(self, vertex):
x, y = vertex
@ -33,6 +36,16 @@ class Go:
nei.append((_x, _y))
return nei
def _corner(self, vertex):
x, y = vertex
corner = []
for d in CORNER_OFFSET:
_x = x + d[0]
_y = y + d[1]
if self._in_board((_x, _y)):
corner.append((_x, _y))
return corner
def _find_group(self, current_board, vertex):
color = current_board[self.game._flatten(vertex)]
# print ("color : ", color)
@ -84,6 +97,47 @@ class Go:
repeat = True
return repeat
def _is_eye(self, current_board, color, vertex):
nei = self._neighbor(vertex)
cor = self._corner(vertex)
ncolor = {color == current_board[self.game._flatten(n)] for n in nei}
if False in ncolor:
# print "not all neighbors are in same color with us"
return False
_, group = self._find_group(current_board, nei[0])
if set(nei) < group:
# print "all neighbors are in same group and same color with us"
return True
else:
opponent_number = [current_board[self.game._flatten(c)] for c in cor].count(-color)
opponent_propotion = float(opponent_number) / float(len(cor))
if opponent_propotion < 0.5:
# print "few opponents, real eye"
return True
else:
# print "many opponents, fake eye"
return False
def _knowledge_prunning(self, current_board, color, vertex):
### check if it is an eye of yourself
### assumptions : notice that this judgement requires that the state is an endgame
if self._is_eye(current_board, color, vertex):
return False
return True
def _sa2cv(self, state, action):
# State is the play board, the shape is [1, self.game.size, self.game.size, 17], action is an index.
# We need to transfer the (state, action) pair into (color, vertex) pair to simulate the move
if state[0, 0, 0, -1] == utils.BLACK:
color = utils.BLACK
else:
color = utils.WHITE
if action == self.game.size ** 2:
vertex = (0, 0)
else:
vertex = self.game._deflatten(action)
return color, vertex
def _is_valid(self, history_boards, current_board, color, vertex):
### in board
if not self._in_board(vertex):
@ -97,11 +151,54 @@ class Go:
if self._is_suicide(current_board, color, vertex):
return False
### forbid global isomorphous
if self._check_global_isomorphous(history_boards, current_board, color, vertex):
return False
return True
def simulate_is_valid(self, history_boards, current_board, state, action):
# initialize simulate_latest_boards and simulate_board from state
self.simulate_latest_boards.clear()
for i in range(8):
self.simulate_latest_boards.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist())
self.simulate_board = copy.copy(self.simulate_latest_boards[-1])
color, vertex = self._sa2cv(state, action)
if not self._is_valid(history_boards, current_board, color, vertex):
return False
if not self._knowledge_prunning(current_board, color, vertex):
return False
return True
def _do_move(self, color, vertex):
if vertex == utils.PASS:
return True
id_ = self.game._flatten(vertex)
if self.simulate_board[id_] == utils.EMPTY:
self.simulate_board[id_] = color
return True
else:
return False
def simulate_step_forward(self, state, action):
# initialize the simulate_board from state
self.simulate_board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
color, vertex = self._sa2cv(state, action)
self._do_move(color, vertex)
new_state = np.concatenate(
[state[:, :, :, 1:8], (np.array(self.simulate_board) == utils.BLACK).reshape(1, self.game.size, self.game.size, 1),
state[:, :, :, 9:16], (np.array(self.simulate_board) == utils.WHITE).reshape(1, self.game.size, self.game.size, 1),
np.array(1 - state[:, :, :, -1]).reshape(1, self.game.size, self.game.size, 1)],
axis=3)
return new_state, 0
def executor_do_move(self, color, vertex):
if not self._is_valid(self.game.history, self.game.board, color, vertex):
return False

View File

@ -79,7 +79,7 @@ while True:
prob.append(np.array(game.prob).reshape(-1, game.size ** 2 + 1))
print("Finished")
print("\n")
score = game.executor.executor_get_score(True)
score = game.game_engine.executor_get_score(True)
if score > 0:
winner = utils.BLACK
else:

View File

@ -1,199 +0,0 @@
import os, sys
sys.path.append(os.path.join(os.path.dirname(__file__), os.path.pardir))
import numpy as np
import utils
import time
import copy
import network_small
import tensorflow as tf
from collections import deque
from tianshou.core.mcts.mcts import MCTS
NEIGHBOR_OFFSET = [[1, 0], [-1, 0], [0, -1], [0, 1]]
CORNER_OFFSET = [[-1, -1], [-1, 1], [1, 1], [1, -1]]
class GoEnv:
def __init__(self, **kwargs):
self.game = kwargs['game']
self.simulate_board = [utils.EMPTY] * (self.game.size ** 2)
self.simulate_latest_boards = deque(maxlen=8)
def _in_board(self, vertex):
x, y = vertex
if x < 1 or x > self.game.size: return False
if y < 1 or y > self.game.size: return False
return True
def _neighbor(self, vertex):
x, y = vertex
nei = []
for d in NEIGHBOR_OFFSET:
_x = x + d[0]
_y = y + d[1]
if self._in_board((_x, _y)):
nei.append((_x, _y))
return nei
def _corner(self, vertex):
x, y = vertex
corner = []
for d in CORNER_OFFSET:
_x = x + d[0]
_y = y + d[1]
if self._in_board((_x, _y)):
corner.append((_x, _y))
return corner
def _find_group(self, current_board, vertex):
color = current_board[self.game._flatten(vertex)]
# print ("color : ", color)
chain = set()
frontier = [vertex]
has_liberty = False
while frontier:
current = frontier.pop()
# print ("current : ", current)
chain.add(current)
for n in self._neighbor(current):
if current_board[self.game._flatten(n)] == color and not n in chain:
frontier.append(n)
if current_board[self.game._flatten(n)] == utils.EMPTY:
has_liberty = True
return has_liberty, chain
def _is_suicide(self, current_board, color, vertex):
current_board[self.game._flatten(vertex)] = color # assume that we already take this move
suicide = False
has_liberty, group = self._find_group(current_board, vertex)
if not has_liberty:
suicide = True # no liberty, suicide
for n in self._neighbor(vertex):
if current_board[self.game._flatten(n)] == utils.another_color(color):
opponent_liberty, group = self._find_group(current_board, n)
if not opponent_liberty:
suicide = False # this move is able to take opponent's stone, not suicide
current_board[self.game._flatten(vertex)] = utils.EMPTY # undo this move
return suicide
def _process_board(self, current_board, color, vertex):
nei = self._neighbor(vertex)
for n in nei:
if current_board[self.game._flatten(n)] == utils.another_color(color):
has_liberty, group = self._find_group(current_board, n)
if not has_liberty:
for b in group:
current_board[self.game._flatten(b)] = utils.EMPTY
def _check_global_isomorphous(self, history_boards, current_board, color, vertex):
repeat = False
next_board = copy.copy(current_board)
next_board[self.game._flatten(vertex)] = color
self._process_board(next_board, color, vertex)
if next_board in history_boards:
repeat = True
return repeat
def _is_eye(self, current_board, color, vertex):
nei = self._neighbor(vertex)
cor = self._corner(vertex)
ncolor = {color == current_board[self.game._flatten(n)] for n in nei}
if False in ncolor:
# print "not all neighbors are in same color with us"
return False
_, group = self._find_group(current_board, nei[0])
if set(nei) < group:
# print "all neighbors are in same group and same color with us"
return True
else:
opponent_number = [current_board[self.game._flatten(c)] for c in cor].count(-color)
opponent_propotion = float(opponent_number) / float(len(cor))
if opponent_propotion < 0.5:
# print "few opponents, real eye"
return True
else:
# print "many opponents, fake eye"
return False
def _knowledge_prunning(self, current_board, color, vertex):
### check if it is an eye of yourself
### assumptions : notice that this judgement requires that the state is an endgame
if self._is_eye(current_board, color, vertex):
return False
return True
def _sa2cv(self, state, action):
# State is the play board, the shape is [1, self.game.size, self.game.size, 17], action is an index.
# We need to transfer the (state, action) pair into (color, vertex) pair to simulate the move
if state[0, 0, 0, -1] == utils.BLACK:
color = utils.BLACK
else:
color = utils.WHITE
if action == self.game.size ** 2:
vertex = (0, 0)
else:
vertex = self.game._deflatten(action)
return color, vertex
def _is_valid(self, history_boards, current_board, color, vertex):
### in board
if not self._in_board(vertex):
return False
### already have stone
if not current_board[self.game._flatten(vertex)] == utils.EMPTY:
return False
### check if it is suicide
if self._is_suicide(current_board, color, vertex):
return False
### forbid global isomorphous
if self._check_global_isomorphous(history_boards, current_board, color, vertex):
return False
return True
def simulate_is_valid(self, history_boards, current_board, state, action):
# initialize simulate_latest_boards and simulate_board from state
self.simulate_latest_boards.clear()
for i in range(8):
self.simulate_latest_boards.append((state[:, :, :, i] - state[:, :, :, i + 8]).reshape(-1).tolist())
self.simulate_board = copy.copy(self.simulate_latest_boards[-1])
color, vertex = self._sa2cv(state, action)
if not self._is_valid(history_boards, current_board, color, vertex):
return False
if not self._knowledge_prunning(current_board, color, vertex):
return False
return True
def _do_move(self, color, vertex):
if vertex == utils.PASS:
return True
id_ = self.game._flatten(vertex)
if self.simulate_board[id_] == utils.EMPTY:
self.simulate_board[id_] = color
return True
else:
return False
def simulate_step_forward(self, state, action):
# initialize the simulate_board from state
self.simulate_board = (state[:, :, :, 7] - state[:, :, :, 15]).reshape(-1).tolist()
color, vertex = self._sa2cv(state, action)
self._do_move(color, vertex)
new_state = np.concatenate(
[state[:, :, :, 1:8], (np.array(self.simulate_board) == utils.BLACK).reshape(1, self.game.size, self.game.size, 1),
state[:, :, :, 9:16], (np.array(self.simulate_board) == utils.WHITE).reshape(1, self.game.size, self.game.size, 1),
np.array(1 - state[:, :, :, -1]).reshape(1, self.game.size, self.game.size, 1)],
axis=3)
return new_state, 0