mcts update

This commit is contained in:
Tongzheng Ren 2017-11-17 15:09:07 +08:00
parent 767fd4ea20
commit c5c2cdf0f3
5 changed files with 40 additions and 15 deletions

0
tianshou/__init__.py Normal file
View File

View File

View File

View File

@ -17,7 +17,7 @@ class MCTSNode(object):
def selection(self):
raise NotImplementedError("Need to implement function selection")
def backpropagation(self, action, value):
def backpropagation(self, action, value, is_terminated):
raise NotImplementedError("Need to implement function backpropagation")
def expansion(self, simulator, action):
@ -34,20 +34,28 @@ class UCTNode(MCTSNode):
self.W = np.zeros([action_num])
self.N = np.zeros([action_num])
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
self.is_terminated = False
def selection(self):
action = np.argmax(self.ucb)
if self.is_terminated:
action = None
else:
action = np.argmax(self.ucb)
if action in self.children.keys():
self.children[action].selection()
else:
return self, action
def backpropagation(self, action, value):
def backpropagation(self, action, value, is_terminated):
self.is_terminated = is_terminated
self.N[action] += 1
self.W[action] += 1
self.Q = self.W / self.N
self.W[action] += value
for i in range(self.action_num):
if self.N[i] != 0:
self.Q[i] = (self.W[i] + 0.)/self.N[i]
self.ucb = self.Q + c_puct * self.prior * math.sqrt(np.sum(self.N)) / (self.N + 1)
self.parent.backup_value(self.parent.action, value)
if self.parent is not None:
self.parent.backpropagation(self.parent.action, value)
def expansion(self, simulator, action):
next_state = simulator.step_forward(self.state, action)
@ -56,8 +64,8 @@ class UCTNode(MCTSNode):
self.children[action] = UCTNode(self, action, next_state, self.action_num, prior)
def simulation(self, evaluator, state):
value = evaluator(state)
return value
value, is_ternimated = evaluator(state)
return value, is_ternimated
class TSNode(MCTSNode):
@ -98,12 +106,23 @@ class MCTS:
while (max_step is not None and self.step < self.max_step or max_step is None) \
and (max_time is not None and time.time() - self.start_time < self.max_time or max_time is None):
self.expand()
if max_step is not None:
self.step += 1
def expand(self):
print(self.root.Q)
print(self.root.N)
print(self.root.W)
node, new_action = self.root.selection()
node.expansion(self.simulator, new_action)
value = node.simulation(self.evaluator, node.children[new_action].state)
node.backpropagation(new_action, value)
print(node.state, new_action)
if new_action is None:
value, is_terminated = node.simulation(self.evaluator, node.state)
node.backpropagation(node.action, value, is_terminated)
print(value)
else:
node.expansion(self.simulator, new_action)
value, is_terminated = node.simulation(self.evaluator, node.children[new_action].state)
node.backpropagation(new_action, value, is_terminated)
if __name__=="__main__":

View File

@ -1,5 +1,6 @@
import numpy as np
from mcts import MCTS
import matplotlib.pyplot as plt
class TestEnv:
def __init__(self, max_step=5):
@ -13,16 +14,21 @@ class TestEnv:
raise ValueError("Action must be 0 or 1!")
if state[0] >= 2**state[1] or state[1] >= self.max_step:
raise ValueError("Invalid State!")
print("Operate action {} at state {}, timestep {}".format(action, state[0], state[1]))
# print("Operate action {} at state {}, timestep {}".format(action, state[0], state[1]))
state[0] = state[0] + 2**state[1]*action
state[1] = state[1] + 1
return state
def evaluator(self, state):
if state[1] == self.max_step:
reward = int(np.random.uniform() > self.reward[state[0]])
print("Get reward {}".format(reward))
is_terminated = True
else:
reward = 0
return [state, reward]
is_terminated = False
return reward, is_terminated
if __name__=="__main__":
env = TestEnv(1)
env.step_forward([0,0],1)
evaluator = lambda state: env.evaluator(state)
mcts = MCTS(env, evaluator, [0,0], 2, np.ones([2])/2, max_step=1e4)