Make envpool usage configuration more explicit

This commit is contained in:
Dominik Jain 2024-01-16 12:16:46 +01:00
parent a4d7ccba26
commit c9cb41bf55
3 changed files with 39 additions and 29 deletions

View File

@ -1,6 +1,6 @@
# Borrow a lot from openai baselines:
# https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py
import logging
import warnings
from collections import deque
@ -17,10 +17,13 @@ from tianshou.highlevel.env import (
)
from tianshou.highlevel.trainer import EpochStopCallback, TrainingContext
envpool_is_available = True
try:
import envpool
except ImportError:
envpool_is_available = False
envpool = None
log = logging.getLogger(__name__)
def _parse_reset_result(reset_result):
@ -343,15 +346,29 @@ def make_atari_env(
class AtariEnvFactory(EnvFactoryGymnasium):
def __init__(self, task: str, seed: int, frame_stack: int, scale: bool = False):
def __init__(
self,
task: str,
seed: int,
frame_stack: int,
scale: bool = False,
use_envpool_if_available: bool = True,
):
assert "NoFrameskip" in task
self.frame_stack = frame_stack
self.scale = scale
envpool_factory = None
if use_envpool_if_available:
if envpool_is_available:
envpool_factory = self.EnvPoolFactory(self)
log.info("Using envpool, because it available")
else:
log.info("Not using envpool, because it is not available")
super().__init__(
task=task,
seed=seed,
venv_type=VectorEnvType.SUBPROC_SHARED_MEM,
envpool_factory=self.EnvPoolFactory(self),
envpool_factory=envpool_factory,
)
def create_env(self, mode: EnvMode) -> Env:

View File

@ -11,9 +11,11 @@ from tianshou.highlevel.env import (
from tianshou.highlevel.persistence import Persistence, PersistEvent, RestoreEvent
from tianshou.highlevel.world import World
envpool_is_available = True
try:
import envpool
except ImportError:
envpool_is_available = False
envpool = None
log = logging.getLogger(__name__)
@ -62,7 +64,7 @@ class MujocoEnvFactory(EnvFactoryGymnasium):
task=task,
seed=seed,
venv_type=VectorEnvType.SUBPROC_SHARED_MEM,
envpool_factory=EnvPoolFactory(),
envpool_factory=EnvPoolFactory() if envpool_is_available else None,
)
self.obs_norm = obs_norm

View File

@ -295,19 +295,16 @@ class EnvPoolFactory:
seed: int,
kwargs: dict,
) -> BaseVectorEnv | None:
try:
import envpool
import envpool
envpool_task = self._transform_task(task)
envpool_kwargs = self._transform_kwargs(kwargs, mode)
return envpool.make_gymnasium(
envpool_task,
num_envs=num_envs,
seed=seed,
**envpool_kwargs,
)
except ImportError:
return None
envpool_task = self._transform_task(task)
envpool_kwargs = self._transform_kwargs(kwargs, mode)
return envpool.make_gymnasium(
envpool_task,
num_envs=num_envs,
seed=seed,
**envpool_kwargs,
)
class EnvFactory(ToStringMixin, ABC):
@ -364,9 +361,8 @@ class EnvFactoryGymnasium(EnvFactory):
):
""":param task: the gymnasium task/environment identifier
:param seed: the random seed
:param venv_type: the type of vectorized environment to use. If `envpool_factory` is specified, this is but a fallback.
:param envpool_factory: the factory to use for envpool-based vectorized environment creation if `envpool` is installed.
If it is not installed, `venv_type` applies as a fallback.
:param venv_type: the type of vectorized environment to use (if `envpool_factory` is not specified)
:param envpool_factory: the factory to use for vectorized environment creation based on envpool; envpool must be installed.
:param render_mode_train: the render mode to use for training environments
:param render_mode_test: the render mode to use for test environments
:param render_mode_watch: the render mode to use for environments that are used to watch agent performance
@ -406,19 +402,14 @@ class EnvFactoryGymnasium(EnvFactory):
def create_venv(self, num_envs: int, mode: EnvMode) -> BaseVectorEnv:
if self.envpool_factory is not None:
venv = self.envpool_factory.create_venv(
return self.envpool_factory.create_venv(
self.task,
num_envs,
mode,
self.seed,
self._create_kwargs(mode),
)
if venv is not None:
return venv
log.debug(
f"EnvPool-based creation could not be applied, falling back to default based on {self.venv_type}",
)
venv = super().create_venv(num_envs, mode)
venv.seed(self.seed)
return venv
else:
venv = super().create_venv(num_envs, mode)
venv.seed(self.seed)
return venv