merge master
This commit is contained in:
parent
941284e7b1
commit
cf57144ce9
@ -1,225 +0,0 @@
|
||||
import os
|
||||
import time
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
import time
|
||||
import tensorflow as tf
|
||||
import tensorflow.contrib.layers as layers
|
||||
|
||||
import multi_gpu
|
||||
import time
|
||||
import copy
|
||||
|
||||
# os.environ["CUDA_VISIBLE_DEVICES"] = "1"
|
||||
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
||||
|
||||
|
||||
def residual_block(input, is_training):
|
||||
normalizer_params = {'is_training': is_training,
|
||||
'updates_collections': tf.GraphKeys.UPDATE_OPS}
|
||||
h = layers.conv2d(input, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu,
|
||||
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
|
||||
weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
h = layers.conv2d(h, 256, kernel_size=3, stride=1, activation_fn=tf.identity,
|
||||
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
|
||||
weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
h = h + input
|
||||
return tf.nn.relu(h)
|
||||
|
||||
|
||||
def policy_heads(input, is_training):
|
||||
normalizer_params = {'is_training': is_training,
|
||||
'updates_collections': tf.GraphKeys.UPDATE_OPS}
|
||||
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
|
||||
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
|
||||
weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
h = layers.flatten(h)
|
||||
h = layers.fully_connected(h, 82, activation_fn=tf.identity, weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
return h
|
||||
|
||||
|
||||
def value_heads(input, is_training):
|
||||
normalizer_params = {'is_training': is_training,
|
||||
'updates_collections': tf.GraphKeys.UPDATE_OPS}
|
||||
h = layers.conv2d(input, 2, kernel_size=1, stride=1, activation_fn=tf.nn.relu,
|
||||
normalizer_fn=layers.batch_norm, normalizer_params=normalizer_params,
|
||||
weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
h = layers.flatten(h)
|
||||
h = layers.fully_connected(h, 256, activation_fn=tf.nn.relu, weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
h = layers.fully_connected(h, 1, activation_fn=tf.nn.tanh, weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
return h
|
||||
|
||||
|
||||
class Network(object):
|
||||
def __init__(self):
|
||||
self.x = tf.placeholder(tf.float32, shape=[None, 9, 9, 17])
|
||||
self.is_training = tf.placeholder(tf.bool, shape=[])
|
||||
self.z = tf.placeholder(tf.float32, shape=[None, 1])
|
||||
self.pi = tf.placeholder(tf.float32, shape=[None, 82])
|
||||
self.build_network()
|
||||
|
||||
def build_network(self):
|
||||
h = layers.conv2d(self.x, 256, kernel_size=3, stride=1, activation_fn=tf.nn.relu,
|
||||
normalizer_fn=layers.batch_norm,
|
||||
normalizer_params={'is_training': self.is_training,
|
||||
'updates_collections': tf.GraphKeys.UPDATE_OPS},
|
||||
weights_regularizer=layers.l2_regularizer(1e-4))
|
||||
for i in range(4):
|
||||
h = residual_block(h, self.is_training)
|
||||
self.v = value_heads(h, self.is_training)
|
||||
self.p = policy_heads(h, self.is_training)
|
||||
# loss = tf.reduce_mean(tf.square(z-v)) - tf.multiply(pi, tf.log(tf.clip_by_value(tf.nn.softmax(p), 1e-8, tf.reduce_max(tf.nn.softmax(p)))))
|
||||
self.value_loss = tf.reduce_mean(tf.square(self.z - self.v))
|
||||
self.policy_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=self.pi, logits=self.p))
|
||||
|
||||
self.reg = tf.add_n(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
|
||||
self.total_loss = self.value_loss + self.policy_loss + self.reg
|
||||
# train_op = tf.train.MomentumOptimizer(1e-4, momentum=0.9, use_nesterov=True).minimize(total_loss)
|
||||
self.update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
|
||||
with tf.control_dependencies(self.update_ops):
|
||||
self.train_op = tf.train.RMSPropOptimizer(1e-4).minimize(self.total_loss)
|
||||
self.var_list = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
|
||||
self.saver = tf.train.Saver(max_to_keep=10, var_list=self.var_list)
|
||||
self.sess = multi_gpu.create_session()
|
||||
|
||||
def train(self):
|
||||
data_path = "./training_data/"
|
||||
data_name = os.listdir(data_path)
|
||||
epochs = 100
|
||||
batch_size = 128
|
||||
|
||||
result_path = "./checkpoints_origin/"
|
||||
with multi_gpu.create_session() as sess:
|
||||
sess.run(tf.global_variables_initializer())
|
||||
ckpt_file = tf.train.latest_checkpoint(result_path)
|
||||
if ckpt_file is not None:
|
||||
print('Restoring model from {}...'.format(ckpt_file))
|
||||
self.saver.restore(sess, ckpt_file)
|
||||
for epoch in range(epochs):
|
||||
for name in data_name:
|
||||
data = np.load(data_path + name)
|
||||
boards = data["boards"]
|
||||
wins = data["wins"]
|
||||
ps = data["ps"]
|
||||
print (boards.shape)
|
||||
print (wins.shape)
|
||||
print (ps.shape)
|
||||
batch_num = boards.shape[0] // batch_size
|
||||
index = np.arange(boards.shape[0])
|
||||
np.random.shuffle(index)
|
||||
value_losses = []
|
||||
policy_losses = []
|
||||
regs = []
|
||||
time_train = -time.time()
|
||||
for iter in range(batch_num):
|
||||
lv, lp, r, value, prob, _ = sess.run(
|
||||
[self.value_loss, self.policy_loss, self.reg, self.v, tf.nn.softmax(self.p), self.train_op],
|
||||
feed_dict={self.x: boards[
|
||||
index[iter * batch_size:(iter + 1) * batch_size]],
|
||||
self.z: wins[index[
|
||||
iter * batch_size:(iter + 1) * batch_size]],
|
||||
self.pi: ps[index[
|
||||
iter * batch_size:(iter + 1) * batch_size]],
|
||||
self.is_training: True})
|
||||
value_losses.append(lv)
|
||||
policy_losses.append(lp)
|
||||
regs.append(r)
|
||||
if iter % 1 == 0:
|
||||
print(
|
||||
"Epoch: {}, Part {}, Iteration: {}, Time: {}, Value Loss: {}, Policy Loss: {}, Reg: {}".format(
|
||||
epoch, name, iter, time.time() + time_train, np.mean(np.array(value_losses)),
|
||||
np.mean(np.array(policy_losses)), np.mean(np.array(regs))))
|
||||
time_train = -time.time()
|
||||
value_losses = []
|
||||
policy_losses = []
|
||||
regs = []
|
||||
if iter % 20 == 0:
|
||||
save_path = "Epoch{}.Part{}.Iteration{}.ckpt".format(epoch, name, iter)
|
||||
self.saver.save(sess, result_path + save_path)
|
||||
del data, boards, wins, ps
|
||||
|
||||
|
||||
# def forward(call_number):
|
||||
# # checkpoint_path = "/home/yama/rl/tianshou/AlphaGo/checkpoints"
|
||||
# checkpoint_path = "/home/jialian/stuGo/tianshou/stuGo/checkpoints/"
|
||||
# board_file = np.genfromtxt("/home/jialian/stuGo/tianshou/leela-zero/src/mcts_nn_files/board_" + call_number,
|
||||
# dtype='str');
|
||||
# human_board = np.zeros((17, 19, 19))
|
||||
#
|
||||
# # TODO : is it ok to ignore the last channel?
|
||||
# for i in range(17):
|
||||
# human_board[i] = np.array(list(board_file[i])).reshape(19, 19)
|
||||
# # print("============================")
|
||||
# # print("human board sum : " + str(np.sum(human_board[-1])))
|
||||
# # print("============================")
|
||||
# # print(human_board)
|
||||
# # print("============================")
|
||||
# # rint(human_board)
|
||||
# feed_board = human_board.transpose(1, 2, 0).reshape(1, 19, 19, 17)
|
||||
# # print(feed_board[:,:,:,-1])
|
||||
# # print(feed_board.shape)
|
||||
#
|
||||
# # npz_board = np.load("/home/yama/rl/tianshou/AlphaGo/data/7f83928932f64a79bc1efdea268698ae.npz")
|
||||
# # print(npz_board["boards"].shape)
|
||||
# # feed_board = npz_board["boards"][10].reshape(-1, 19, 19, 17)
|
||||
# ##print(feed_board)
|
||||
# # show_board = feed_board[0].transpose(2, 0, 1)
|
||||
# # print("board shape : ", show_board.shape)
|
||||
# # print(show_board)
|
||||
#
|
||||
# itflag = False
|
||||
# with multi_gpu.create_session() as sess:
|
||||
# sess.run(tf.global_variables_initializer())
|
||||
# ckpt_file = tf.train.latest_checkpoint(checkpoint_path)
|
||||
# if ckpt_file is not None:
|
||||
# # print('Restoring model from {}...'.format(ckpt_file))
|
||||
# saver.restore(sess, ckpt_file)
|
||||
# else:
|
||||
# raise ValueError("No model loaded")
|
||||
# res = sess.run([tf.nn.softmax(p), v], feed_dict={x: feed_board, is_training: itflag})
|
||||
# # res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][300].reshape(-1, 19, 19, 17), is_training:False})
|
||||
# # res = sess.run([tf.nn.softmax(p),v], feed_dict={x:fix_board["boards"][50].reshape(-1, 19, 19, 17), is_training:True})
|
||||
# # print(np.argmax(res[0]))
|
||||
# np.savetxt(sys.stdout, res[0][0], fmt="%.6f", newline=" ")
|
||||
# np.savetxt(sys.stdout, res[1][0], fmt="%.6f", newline=" ")
|
||||
# pv_file = "/home/jialian/stuGotianshou/leela-zero/src/mcts_nn_files/policy_value"
|
||||
# np.savetxt(pv_file, np.concatenate((res[0][0], res[1][0])), fmt="%.6f", newline=" ")
|
||||
# # np.savetxt(pv_file, res[1][0], fmt="%.6f", newline=" ")
|
||||
# return res
|
||||
|
||||
def forward(self, checkpoint_path):
|
||||
# checkpoint_path = "/home/tongzheng/tianshou/AlphaGo/checkpoints/"
|
||||
# sess = multi_gpu.create_session()
|
||||
# sess.run(tf.global_variables_initializer())
|
||||
if checkpoint_path is None:
|
||||
self.sess.run(tf.global_variables_initializer())
|
||||
else:
|
||||
ckpt_file = tf.train.latest_checkpoint(checkpoint_path)
|
||||
if ckpt_file is not None:
|
||||
# print('Restoring model from {}...'.format(ckpt_file))
|
||||
self.saver.restore(self.sess, ckpt_file)
|
||||
# print('Successfully loaded')
|
||||
else:
|
||||
raise ValueError("No model loaded")
|
||||
# prior, value = sess.run([tf.nn.softmax(p), v], feed_dict={x: state, is_training: False})
|
||||
# return prior, value
|
||||
return self.sess
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# state = np.random.randint(0, 1, [256, 9, 9, 17])
|
||||
# net = Network()
|
||||
# net.train()
|
||||
# sess = net.forward()
|
||||
# start_time = time.time()
|
||||
# for i in range(100):
|
||||
# sess.run([tf.nn.softmax(net.p), net.v], feed_dict={net.x: state, net.is_training: False})
|
||||
# print("Step {}, use time {}".format(i, time.time() - start_time))
|
||||
# start_time = time.time()
|
||||
net0 = Network()
|
||||
sess0 = net0.forward("./checkpoints/")
|
||||
print("Loaded")
|
||||
while True:
|
||||
pass
|
||||
|
Loading…
x
Reference in New Issue
Block a user