Merge remote-tracking branch 'origin/master'

This commit is contained in:
JialianLee 2017-12-23 15:49:39 +08:00
commit d01f8cd210
11 changed files with 67 additions and 36 deletions

4
.gitignore vendored
View File

@ -4,8 +4,8 @@ leela-zero
parameters
*.swp
*.sublime*
checkpoints
checkpoints_origin
checkpoint
*.json
.DS_Store
data
.log

View File

@ -27,29 +27,30 @@ class Game:
'''
def __init__(self, name="go", checkpoint_path=None):
self.name = name
if "go" == name:
if self.name == "go":
self.size = 9
self.komi = 3.75
self.board = [utils.EMPTY] * (self.size ** 2)
self.history = []
self.history_length = 8
self.latest_boards = deque(maxlen=8)
for _ in range(8):
self.latest_boards.append(self.board)
self.evaluator = model.ResNet(self.size, self.size**2 + 1, history_length=8)
self.game_engine = go.Go(size=self.size, komi=self.komi)
elif "reversi" == name:
elif self.name == "reversi":
self.size = 8
self.evaluator = model.ResNet(self.size, self.size**2 + 1, history_length=1)
self.history_length = 1
self.game_engine = reversi.Reversi()
self.board = self.game_engine.get_board()
else:
print(name + " is an unknown game...")
raise ValueError(name + " is an unknown game...")
self.evaluator = model.ResNet(self.size, self.size ** 2 + 1, history_length=self.history_length)
def clear(self):
self.board = [utils.EMPTY] * (self.size ** 2)
self.history = []
for _ in range(8):
for _ in range(self.history_length):
self.latest_boards.append(self.board)
def set_size(self, n):
@ -76,9 +77,9 @@ class Game:
if vertex == utils.PASS:
return True
# TODO this implementation is not very elegant
if "go" == self.name:
if self.name == "go":
res = self.game_engine.executor_do_move(self.history, self.latest_boards, self.board, color, vertex)
elif "revsersi" == self.name:
elif self.name == "reversi":
res = self.game_engine.executor_do_move(self.board, color, vertex)
return res

View File

@ -34,7 +34,7 @@ if __name__ == '__main__':
daemon = Pyro4.Daemon() # make a Pyro daemon
ns = Pyro4.locateNS() # find the name server
player = Player(role = args.role, engine = engine)
player = Player(role=args.role, engine=engine)
print "Init " + args.role + " player finished"
uri = daemon.register(player) # register the greeting maker as a Pyro object
print "Start on name " + args.role

View File

@ -41,6 +41,11 @@ Tianshou(天授) is a reinforcement learning platform. The following image illus
<img src="https://github.com/sproblvem/tianshou/blob/master/docs/figures/go.png" height="150"/> <img src="https://github.com/sproblvem/tianshou/blob/master/docs/figures/reversi.jpg" height="150"/> <img src="https://github.com/sproblvem/tianshou/blob/master/docs/figures/warzone.jpg" height="150"/>
## examples
During development, run examples under `./examples/` directory with, e.g. `python ppo_example.py`.
Running them under this directory with `python examples/ppo_example.py` will not work.
## About coding style

View File

@ -1,17 +1,16 @@
#!/usr/bin/env python
from __future__ import absolute_import
import tensorflow as tf
import numpy as np
import time
import gym
# our lib imports here!
import sys
sys.path.append('..')
import tianshou.core.losses as losses
from tianshou.core import losses
from tianshou.data.batch import Batch
import tianshou.data.advantage_estimation as advantage_estimation
import tianshou.core.policy as policy
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
def policy_net(observation, action_dim, scope=None):

View File

@ -1,6 +0,0 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from .base import *
from .stochastic import *
from .dqn import *

View File

@ -13,11 +13,23 @@ import tensorflow as tf
__all__ = [
'StochasticPolicy',
'QValuePolicy',
'PolicyBase'
]
# TODO: a even more "base" class for policy
class PolicyBase(object):
"""
base class for policy. only provides `act` method with exploration
"""
def __init__(self):
pass
def act(self, observation, exploration):
raise NotImplementedError()
class QValuePolicy(object):
"""
The policy as in DQN

View File

@ -1,16 +1,22 @@
from tianshou.core.policy.base import QValuePolicy
from __future__ import absolute_import
from .base import PolicyBase
import tensorflow as tf
import sys
sys.path.append('..')
import value_function.action_value as value_func
from ..value_function.action_value import DQN
class DQN_refactor(object):
class DQNRefactor(PolicyBase):
"""
use DQN from value_function as a member
"""
def __init__(self, value_tensor, observation_placeholder, action_placeholder):
self._network = value_func.DQN(value_tensor, observation_placeholder, action_placeholder)
self._network = DQN(value_tensor, observation_placeholder, action_placeholder)
self._argmax_action = tf.argmax(value_tensor, axis=1)
def act(self, observation, exploration):
sess = tf.get_default_session()
if not exploration: # no exploration
action = sess.run(self._argmax_action, feed_dict={})
class DQN(QValuePolicy):

View File

@ -1,4 +1,6 @@
from base import ValueFunctionBase
from __future__ import absolute_import
from .base import ValueFunctionBase
import tensorflow as tf
@ -15,7 +17,6 @@ class ActionValue(ValueFunctionBase):
def get_value(self, observation, action):
"""
:param observation: numpy array of observations, of shape (batchsize, observation_dim).
:param action: numpy array of actions, of shape (batchsize, action_dim)
# TODO: Atari discrete action should have dim 1. Super Mario may should have, say, dim 5, where each can be 0/1
@ -24,7 +25,7 @@ class ActionValue(ValueFunctionBase):
"""
sess = tf.get_default_session()
return sess.run(self.get_value_tensor(), feed_dict=
{self._observation_placeholder: observation, self._action_placeholder:action})[:, 0]
{self._observation_placeholder: observation, self._action_placeholder: action})
class DQN(ActionValue):
@ -39,13 +40,21 @@ class DQN(ActionValue):
:param action_placeholder: of shape (batchsize, )
"""
self._value_tensor_all_actions = value_tensor
canonical_value_tensor = value_tensor[action_placeholder] # maybe a tf.map_fn. for now it's wrong
batch_size = tf.shape(value_tensor)[0]
batch_dim_index = tf.range(batch_size)
indices = tf.stack([batch_dim_index, action_placeholder], axis=1)
canonical_value_tensor = tf.gather_nd(value_tensor, indices)
super(DQN, self).__init__(value_tensor=canonical_value_tensor,
observation_placeholder=observation_placeholder,
action_placeholder=action_placeholder)
def get_value_all_actions(self, observation):
"""
:param observation:
:return: numpy array of Q(s, *) given s, of shape (batchsize, num_actions)
"""
sess = tf.get_default_session()
return sess.run(self._value_tensor_all_actions, feed_dict={self._observation_placeholder: observation})

View File

@ -1,3 +1,6 @@
from __future__ import absolute_import
import tensorflow as tf
# TODO: linear feature baseline also in tf?
class ValueFunctionBase(object):
@ -6,7 +9,7 @@ class ValueFunctionBase(object):
"""
def __init__(self, value_tensor, observation_placeholder):
self._observation_placeholder = observation_placeholder
self._value_tensor = value_tensor
self._value_tensor = tf.squeeze(value_tensor) # canonical values has shape (batchsize, )
def get_value(self, **kwargs):
"""

View File

@ -1,4 +1,6 @@
from base import ValueFunctionBase
from __future__ import absolute_import
from .base import ValueFunctionBase
import tensorflow as tf
@ -17,7 +19,7 @@ class StateValue(ValueFunctionBase):
:param observation: numpy array of observations, of shape (batchsize, observation_dim).
:return: numpy array of state values, of shape (batchsize, )
# TODO: dealing with the last dim of 1 in V(s) and Q(s, a)
# TODO: dealing with the last dim of 1 in V(s) and Q(s, a), this should rely on the action shape returned by env
"""
sess = tf.get_default_session()
return sess.run(self.get_value_tensor(), feed_dict={self._observation_placeholder: observation})[:, 0]
return sess.run(self.get_value_tensor(), feed_dict={self._observation_placeholder: observation})